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ABSTRACT

Human and machine performance in acoustic scene classification
is examined through a parallel experiment using TUT Acoustic
Scenes 2016 dataset. The machine learning perspective is presented
based on the systems submitted for the 2016 challenge on Detection
and Classification of Acoustic Scenes and Events. The human per-
formance, assessed through a listening experiment, was found to be
significantly lower than machine performance. Test subjects exhib-
ited different behavior throughout the experiment, leading to signif-
icant differences in performance between groups of subjects. An
expert listener trained for the task obtained similar accuracy to the
average of submitted systems, comparable also to previous studies
of human abilities in recognizing everyday acoustic scenes.

Index Terms— acoustic scene classification, machine learning,
human performance, listening experiment

1. INTRODUCTION

Acoustic scene classification has been recently receiving a lot of
attention, mainly due to development of context-awareness applica-
tions for portable devices, and is commonly framed as a supervised
classification problem in which input audio must be categorized into
one of a number of predefined classes, which the system is trained
to recognize. Acoustic scene classification task was present in eval-
uation campaigns on environmental sound classification and detec-
tion, namely DCASE 2013 [1] and DCASE 2016 [2]. The latter
provided a dataset of sufficient size to facilitate methods based on
deep learning, which resulted in significantly higher evaluated per-
formance than in the former. In addition, the growing interest for the
problem, manifested in the high number of participants to DCASE
2016, allows a wide comparison of state of the art methods.

A large amount of previous work on the topic is available, but
the different datasets employed in each study makes comparison
more difficult. For example in [3], a classification accuracy of 91%
is reported on a dataset containing 3-second sound examples from
10 acoustic scene classes using mel-frequency cepstral coefficients
(MFCCs) and hidden Markov models (HMM) with 11 states, while
using 3 state HMMs only gives an accuracy of 78%. For the same
dataset, authors of [4] reported mean average precision (MAP) of
0.99 using MFCCs and support vector machines (SVM), while the
same configuration of MFCCs and SVMs on the DCASE 2013
dataset obtained only 0.52 MAP; however, a higher performance
of 0.71 was obtained on DCASE 2013 data using histogram of gra-
dients learned from time-frequency representations.

This work received funding from the European Research Council under
the ERC Grant Agreement 637422 EVERYSOUND.

Human performance in recognizing audio scenes has not been
the subject of many parallel studies involving both machine and
human performance. As human performance must be assessed
through listening experiments, obtaining a sufficient number of sub-
jects is usually the main obstacle. For example the experiment in
[3] used 14 subjects, each classifying a number of 30 randomly
selected 3-second samples, with no initial training. Overall accu-
racy of human subjects was only 35%, in contrast to the 91% ob-
tained with the MFCC-HMM system. In [5], a listening test was
conducted using 19 subjects with 25 different scenes, to determine
accuracy, reaction time and acoustic cues for recognition. The av-
erage recognition rate was 70%, with an average reaction time of
20 seconds, and most subjects reported recognition was based on
prominent identified sound events. A follow-up study involving
both human and machine performance used 24 categories, further
grouped into 6 higher level ones [6]. Test subjects were required to
answer as soon as possible, resulting in a performance of 69% for
24 classes and 88% for 6 classes, slightly higher than the perfor-
mance of the automatic methods proposed in the same work (58%,
and 82%, respectively). Average reaction time was found to be 13
seconds, ranging from 5 seconds (nature) to 21 seconds (library).

For the DCASE2013 acoustic scene dataset containing 10 cate-
gories, two independent listening experiments were performed, one
in which test subjects had to listen 50 samples each [7], another in
which test subjects were allowed to classify as many test samples as
they wanted [8]. In both cases, the subjects had to listen the full au-
dio. Both tests also considered human subjects as pre-trained, and
did not provide any familiarization stage, therefore measure perfor-
mance based on the personal experience of the subjects. Results
of the two listening experiments are similar, with a performance of
72% [8] and 79% [7], both significantly superior to 55% average
performance of the machine learning methods.

In this paper we present a detailed analysis of systems submit-
ted to DCASE 2016 task on acoustic scene classification, and the
comparison with the human performance on the same evaluation
data, determined through a listening experiment. A detailed analy-
sis of the listening experiment is also presented, taking into account
the influence of familiarity with the acoustic scenes, user behavior,
and characteristics of the acoustic scenes.

2. ACOUSTIC SCENE CLASSIFICATION IN DCASE 2016

Acoustic scene classification in DCASE 2016 was defined as the
task of classifying a test recording into one of the 15 predefined
classes characterizing the environment in which it was recorded –
for example “bus”, “home”, “office”, as illustrated in Fig. 1.
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2.1. Dataset and experimental setup

The task used the TUT Acoustic Scenes 2016 dataset [9] that
consists of 3-5 minute long binaural recordings from 15 acoustic
scenes: lakeside beach, bus, cafe/restaurant, car, city center, forest
path, grocery store, home, library, metro station, office, urban park,
residential area, train, and tram. There are multiple recordings for
each scene class, and each recording was done in a different lo-
cation to ensure high acoustic variability. All data was recorded
in Finland. The data was distributed as 30-second segments, with
clear indication of the original long recording that each segment be-
longs to. Complete details on data recording, annotation and audio
postprocessing procedure can be found in [9].

The development set provided for the task contains approxi-
mately 70% of the total available data for each scene, while the
other 30% was kept as evaluation set. A cross-validation setup was
also provided with the development set, containing 4 folds. The par-
titioning into development and evaluation subsets, and furthermore
into fold subsets, was done such that all 30-second segments from
the same original recording were always included into the same sub-
set. For each acoustic scene, there were 78 30-second segments in
the development set and 26 in the evaluation set.

A baseline system was also provided, using MFCCs as features
with a Gaussian mixture model (GMM) based classifier. MFCCs
were calculated in 40 ms frames windowed with a Hamming win-
dow with 50% overlap and 40 mel bands; a feature vector for each
frame was constructed from the first 20 MFCCs (including 0th
MFCC), delta and acceleration coefficients calculated using a win-
dow length of 9 frames. In training, a GMM with 16 components
was trained for each class using the expectation maximization algo-
rithm. In testing, classification decision is based on maximum like-
lihood among all available models, with the likelihood accumulated
over the entire test sample. Classification accuracy of the baseline
system on the development data, obtained using the provided cross-
validation setup, is 72.5%, with context-wise performance varying
from 13.9% (park) to 98.6% (office). The baseline system classifi-
cation accuracy on the later released evaluation set is 77.2%.

2.2. Challenge submissions

The task attracted a very high number of participants, receiving a
number of 48 submissions from 34 different teams. Most submitted
systems outperformed the baseline system; this was expected, given
its simplicity. A large number of submissions used mel-frequency
scale feature representations, namely MFCCs [10, 11] or log mel
energies [12]. The choice is likely motivated by the fact that they
provide a good characterization of the spectral properties of the
signal, while also providing reasonably high inter-class variabil-
ity that allows discrimination between the categories. Other fea-
ture representations included CQT-based time-frequency represen-
tations [13], combinations of various features (including mel-based)
[14, 15, 16], and representations obtained in unsupervised way [17].

A large majority of the submitted systems were based on deep
learning, signaling a shift towards pursuing highest possible per-
formance with no concern for computational complexity, as usu-
ally neural networks have a large number of parameters to be op-
timized. Of the 48 systems, 22 use deep learning, 10 use SVMs
[10], while ensemble classifiers account for other 10 [14, 16, 15].
Choices for neural network include feed-forward, convolutional
(CNN) [12, 17], recurrent (RNN, including LSTM), and combina-
tions of neural networks with other techniques, specifically GMMs
[11]. Factor analysis methods also perform well: even though they

Figure 1: Acoustic scene classification: classifying a test example
into one of the predefined acoustic scene categories.

were not extensively used, i-vectors [14] and NMF based methods
[13] are among top performing systems - exploiting the fact that
each scene is composed of multiple sources whose joint variations
can be explained using latent variables.

2.3. Analysis of challenge results

The performance of submitted systems varies from 89.7% to 62.8%,
with 10 top systems having over 85% accuracy, and 9 systems hav-
ing accuracies lower than the provided baseline system. Figure
2 presents information on systems that performed better than the
baseline. In the figure, the 95% confidence intervals are also pre-
sented, calculated as a binomial proportion confidence interval for
the classification output being correct or incorrect with respect to
the ground truth. It can be seen that confidence intervals of closely
performing systems overlap significantly. A further analysis was
performed using McNemar’s test [18], by comparing the classifica-
tion output in pairs, with a significance level of 0.05%. The results
show that 6 systems can not be considered as performing differently
than the winner, and similarly, a number of systems can not be con-
sidered as performing differently from the baseline system.

Class-wise results show rather large difference in classification
performance between the systems for different scene categories. For
different systems, most difficult scenes are library, with lowest score
obtained by at least one system 0%, and train, with lowest score
11.5%. Other relatively difficult scenes are cafe (lowest score 19%),
residential area (23%), and home (34%). On the other hand, beach
bus, car, and office all had a score of at least 69% in all systems.
Detailed information on class-wise performance for all submissions
is available on the challenge website [2].

The overall confusion matrix of the submitted systems is pre-
sented in Fig. 3, with values over 10 marked for the cells. Aver-
age performance across contexts for all systems is 80.9%, while
the overall performance determined by a majority vote among all
systems is 87.2%%. Office and tram are on average the easiest to
recognize, with a 96% accuracy, while the average for the difficult
classes stays low, with library having an average accuracy of only
43%, and train 52%. Most notable confusions are between urban
park and residential area, and between library and home. These
confusions are understandable from the human perspective, as the
scenes have similar acoustic content, park having sounds of birds,
children and human activity in the foreground and street sounds in
the background, while residential area consists of low traffic street
scenes having birds and human activity (gardens) as background.
Similarly, library and home scenes are quiet and with rare sounds
(some recordings in single person home, no conversation, reading
or typing). The confusion between train and cafe is explained by
recordings made in the restaurant car of the train, where the domi-
nating acoustic characteristics reflect more a cafeteria than a train.
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Figure 2: Acoustic scene classification task results on the evaluation set and 95% confidence intervals of their performance. Based on
McNemar test with a significance level of 0.05%, 5 systems cannot be judged to perform differently than the winner (orange), and 13 are not
different from the baseline system (blue) under same statistical test conditions.

3. LISTENING EXPERIMENT

For a direct comparison with human perspective of the same data,
a listening experiment containing the samples from the evaluation
dataset was set up. Due to the size of the dataset, subsets containing
30 test samples were presented to each test subject, 2 samples for
each scene category. The test samples per subject were randomly
selected without replacement, resulting in the complete evaluation
dataset being distributed among 13 test subjects.

3.1. Experiment setup

The experiment was implemented to be used online, such that the
DCASE challenge participants can take part. Subjects were advised
to do the experiment in a noiseless environment and to use good
quality headphones. Subjects were asked if they reside in Finland,
for analyzing influence of soundscape familiarity on the classifica-
tion accuracy. First, the participants were offered a familiarization
stage, in which 3 examples of 10 seconds for each of the 15 scene
classes were presented, along with their label. The familiarization
samples were randomly selected from the development set for each
subject. Test subjects were instructed to listen as many samples and
as many times as they want, and proceed to the test when confident
enough of their abilities. A record of the samples played by the
user on the familiarization page was kept, to analyze recognition
performance with respect to the use of training.

The test material was presented as separate task pages, with one
single audio sample per page and radio buttons for the 15 considered
acoustic scene classes. Test subjects were informed that the audio
sample can be listened multiple times, and instructed to select an
answer when confident in their choice. It was not necessary to listen
fully the audio sample. A record of the time spent on each task
page was kept, to analyze recognition performance with respect to
reaction time.

3.2. Analysis of human performance

A number of 87 participants provided 2610 individual task answers.
For evaluation of recognition accuracy, each audio sample is con-
sidered as a separate test item and compared to the corresponding
ground truth. The overall performance of the human subjects cal-
culated over all answers was 54.4 %, which is surprisingly low
when compared with the performance of machine learning meth-
ods. Most previous parallel performance studies resulted in human
performance similar or higher than machine learning performance,
with the notable exception of very short audio samples in [3]. We
hypothesize that the results are dominated by test subjects whose

own experience of soundscapes does not correspond with the char-
acteristics of the data recorded in Finland. Indeed, by grouping test
subjects based on their location, we obtained a recognition accu-
racy of the group familiar with Finnish soundscape of 60.4% (with
a 95% CI 55.9-64.8), while for the other group the accuracy is only
53% (with a 95% CI 50.9-55.1), indicating a clear relationship be-
tween familiarity and performance. These results are included in
the ”Familiarity” panel in Fig. 5.

The overall confusion matrix obtained from the listening exper-
iment is presented in Fig. 4. It is immediately noticeable that the
confusions between scene categories is much more distributed than
for the machine learning methods. Similarity in the two cases is
observed for confusion between park and residential area, tram to
train and train to cafe. Other confusions tend to be grouped within
subjectively similar acoustic scenes, such as nature scenes (beach,
park, forest path, residential area), street scenes (city center and res-
idential area) or quiet space (office, library, home).

Additional investigation of the subjects behavior throughout the
experiment was performed. To study the effect of the training, three
groups of subjects were formed based on their behavior in the famil-
iarization stage: subjects that listened at most half of the provided
examples, subjects that listened between half and all, and subjects
that listened all provided examples at least once. Performance of
each group was assessed separately. Based on the results presented
in Fig. 5 in the ”Training” panel, we can conclude that subjects that
spent more time in the familiarization stage and listened to all data
had higher scores, indicating a clear relationship between training
and recognition performance.

To study user behavior, the subjects were grouped based on the
average time they spent on the task pages, considering that a consci-
entious test subject will listen the entire audio sample before select-
ing an answer. Based on conclusions from [6] (13 s) and [5](20 s),
we created groups for subjects that listened on average less than half
the audio sample (spending under 15 s per task page), between half
and full length (15 to 30 s), and subjects that listened the audio sam-
ple fully at least once (over 30 s). Performance of the three groups
is presented in Fig. 5 in the ”Test subject” panel. Results indicate
that subjects that listened more of the test sample had higher scores,
even tough there was not a very high difference between users that
tend to listen the entire sample or over half of it. However, perfor-
mance of users that tended to rush through the listening experiment
was significantly lower than of the other groups.

To study the influence of the acoustic characteristics, the rela-
tive ease of recognizing samples from different acoustic scenes was
analyzed by taking into account the average time spent per task page
irrespective of the test subject. We consider that the samples that are
easy to recognize require only a short time, and the test subject is
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Figure 3: Confusion matrix of all submitted systems
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Figure 5: Human performance analyzed with respect to familiarity
with the scene, use of training, test subject behavior and relative
ease of recognition

therefore confident in selecting an answer early. The same temporal
limits were used for grouping the obtained answers as previously
(<15s, 15-30s, >30s), but this time grouping individual answers,
not test subjects. Results presented in Fig. 5 show that indeed the
test samples that prompted a quick reaction from the users had the
highest average recognition accuracy, even though the difference
between the first two groups is not very large. On the other hand,
samples that were listened fully or possibly multiple times had a
significantly lower average recognition accuracy, suggesting that if
the cues for recognition are not found early enough, listening the
example multiple times does not help with recognizing it. This re-
sult correlates with the class-based accuracy, as acoustic scenes that
needed smaller time per task page on average had the highest recog-
nition accuracy (beach, cafe, car have average time per task page 14,
18, 22s and accuracy 78, 80, 75, while library, park, train and tram
have average time per task page 35, 39, 33, 35s and accuracy 32,
44, 29, 35.

3.3. Expert listener

In order to investigate the reason for the large gap between human
and machine performance, an additional listening experiment was
prepared, containing the complete evaluation dataset to be classi-
fied by one research assistant who had recorded and annotated data
in TUT Acoustic Scenes 2016 dataset. We consider that he was ex-
posed to much higher amount of training data than the subjects of
the other experiment, comparable with machine learning methods
and was familiar with the definition of the classes used in the data

collection. The experiment was setup the same way, including a
familiarization stage, as the data recording process was done 8-12
months earlier.

Recognition performance of the expert listener was calculated
only for the test samples he has not recorded himself (262 of 390
samples). For this set, his recognition accuracy was 77.1%, which
is comparable to the human performance obtained in the other men-
tioned studies with comparable number of categories (72% in [8]
and 79% in [7] for 10 classes, 69% in [6] for 24 classes, 70% in [5]
for 25 classes). The expert listener performance is also close to the
average performance of all systems, which is 80%. This indicates
that if some amount of training is provided or can be assumed, hu-
man performance in recognizing 10-25 acoustic scenes will be close
to 80%.

4. CONCLUSIONS

The growing amount of data available for training supervised ma-
chine learning methods to classify acoustic scenes brings a clear
improvement of performance and generalization properties to algo-
rithms. At the same time, human subjects tested on large amount
of data with high variability perform noticeably worse than auto-
matic methods when not sufficiently trained for recognizing the
same acoustic scenes. The human performance seems highly in-
fluenced by familiarity with the soundscape and training, as experi-
ment subjects living in similar geographical areas as the ones where
recordings were made performed better than subjects from other
parts of the world. An expert listener trained on a large amount of
data performed comparably with the average of the automatic meth-
ods. At the same time, the human performance seems to be ceiled
at around 80% performance, a value that was not surpassed yet in
any of the available studies.

Confusions between different scenes exist, some common on
both human and machine sides; some cases originate from common
characteristics of the scenes, such as similar sounds (urban park vs
residential area, forest path vs urban park) or quiet background not
providing sufficient clues for recognition (home vs library), oth-
ers from the very definition of the scene (restaurant vs restaurant
car in the train). On the other hand, with high amounts of training
data, highly performing machine learning methods seem capable
of learning very well how to discriminate between closely similar
categories, and universally good performance seems achievable if
enough training data is available.
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