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ABSTRACT 
A system is described which segments musical signals according 
to the presence or absence of drum instruments. Two different yet 
approximately equall y accurate approaches were taken to solve 
the problem. The first is based on periodicity detection in the 
amplitude envelopes of the signal at subbands. The band-wise 
periodicity estimates are aggregated into a summary 
autocorrelation function, the characteristics of which reveal the 
drums. The other mechanism applies straightforward acoustic 
pattern recognition approach with mel-frequency cepstrum 
coeff icients as features and a Gaussian mixture model classifier. 
The integrated system achieves 88 % correct segmentation over a 
database of 28 hours of music from different musical genres. For 
the both methods, errors occur for borderline cases with soft 
percussive-li ke drum accompaniment, or transient-li ke 
instrumentation without drums. 

1. INTRODUCTION 
Segmentation and analysis of musical signals has gained 
increasing amounts of research interest in recent years 
[1,2,11,12]. The presence/absence of drum instruments is an 
important high-level descriptor for music classification and 
retrieval. In many cases, exactly expressible descriptors are more 
eff icient for information retrieval than more ambiguous concepts 
such as musical genre. For example, someone might search for 
classical music by requesting a piece with string instruments and 
without drums.  Information about the drums can also be used in 
audio editing, or in further analysis, e.g. in music transcription, 
metrical analysis, or rhythm recognition. 

The aim of this paper is to present a drum detection system, 
which would be as generic as possible. The problem of drum 
detection in music is more diff icult than what it seems at a first 
glance. For a major part of techno or rock/pop music, for 
example, detection is more or less trivial. However, a detection 
systems designed for these musical genres does not generali zed to 
the others. Music contains a lot of cases that are much more 
ambiguous. Drums go easil y undetected in jazz/big band music, 
where only hihat or cymbals are softly played at the background. 
On the other hand, erroneous detections may pop up for pieces 
with acoustic steel-stringed guitar, pizzicato strings, cembalo, or 
staccato piano accompaniment, to mention some examples. 

Earlier work in the area of the automatic analysis of musical 
rhythms has mostly concentrated on metrical analysis [14], and in 
many cases for MIDI data. There are a few exceptions, however. 
Alghoniemy et al. used a narrowband filt er at low frequencies to 

detect macro and micro scale periodicity [3]. Tzanetakis et al. 
have used the Discrete Wavelet Transform to decompose the 
signal into a number of  bands and autocorrelation function to 
detect the various periodiciti es of the signal’ s envelope [1]. This 
structure was used to extract  features for musical genre 
classification. Soltau et al. have used HMMs with Neural 
Networks to represent temporal structures and variations in 
musical signals [2].  

2. METHODS 
2.1 Preprocessing with Sinusoidal Modeling 
Drum instruments in Western music typicall y have a clear 
stochastic noise component [4]. The spectral energy distribution 
of the noise component varies, being wide for the snare drum, 
and concentrated to high frequencies for cymbal sounds, for 
example. In addition to the stochastic component, some drums 
have strong harmonic vibration modes, and they have to be tuned. 
In the case of tom toms, for example, approximately half of the 
spectral energy is harmonic. Nevertheless, these sounds are still 
recognizable based on the stochastic component only. While most 
other musical instruments produce chiefly harmonic energy and 
we are interested in the drums, an attempt was made to separate 
the stochastic and harmonic signal components from each other. 

A sinusoids plus noise spectrum model was used to extract the 
stochastic parts of acoustic musical signals. The model, described 
in [5,6], estimates the harmonic parts of the signal and subtracts 
them in time domain to obtain a noise residual. Although some 
harmonic components are not detected and beginning transients 
of other instruments leak through, the residual signal in general 
has significantly better  “drums-vs-other” ratio than the input 
signal. 

 

2.2 Periodicity Detection Approach 
Periodicity is characteristic for musical rhythms. Drum events 
typicall y form a pattern which is repeated and varied over time. 
As a consequence, the time-varying power spectrum of the signal 
shows clear correlation with a time shift equal to the pattern 
length in the drum track. We propose that the presence of drums 
can be detected by measuring this correlation in musical signals. 
This evaluates a backgrounding hypothesis that periodicity of 
stochastic signal components is a universall y characteristic of 
musical signals with drums. In order to alleviate the interference 
of other musical instruments, periodicity measurement is 
performed in the residual signal after preprocessing with a 
sinusoidal model. 
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2.2.1 Feature Stream 
A signal model was employed which discards the fine structure of 
signals, but preserves their rough spectral energy distribution. 
Band energy ratio (BER) is defined as the ratio of the energy at a 
certain frequency band to the total energy. Thus the BER for the 

thi  subband in time frame k is: 
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where iS  is the set of Fourier transform coeff icients belonging to 
the 

thi  subband [7]. Feature vectors are extracted from the 
preprocessed signal. 

Human auditory perception does not operate on a li near 
frequency scale. Therefore we apply a filt er bank consisting of 
triangular filt ers spaced uniformly on the mel-scale. An 
approximation between a frequency value in Hertz and in mel is 
given as: [8] 
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Features were extracted in 10 ms analysis windows (Hanning 
windowing) and with 50% overlap. Short window length was 
preferred to achieve a better time resolution in the 
autocorrelation calculations later on. The amount of 16 frequency 
bands was found to give suff icient resolution in frequency 
domain. Obtained feature vectors form a feature stream ( )kiC , , 
which is subject for autocorrelation function calculations. 

2.2.2 Summary Autocorrelation Function 
At each frequency band, an autocorrelation function (ACF) is 
calculated over the BER values within a sliding analysis window. 
Analysis window length of three seconds was chosen to capture a 
few patterns of even the slowest rhythms. Autocorrelation 
function of a K-length excerpt of ( )kiC ,  at band i is given by: 
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where τ is the lag. Peaks in the autocorrelation function 
correspond to the lags where the time-domain signal has stronger 
periodicity.  

Despite the preprocessing, also other instruments cause peaks to 
the bandwise autocorrelation functions. Fortunately, however, the 
spectrum of the other instruments tends to concentrate to the mid-
bands, whereas drums are more prominent at the low or high 
bands (there are exceptions from this rule, e.g. the violin or the 
snare drum). On the basis of this observation we will weight 
bands differently before forming the summary autocorrelation 
function (SACF). Lower and higher bands are assigned equal 
weights and mid-bands have are steeply attenuated. 
Autocorrelation functions are weighted and then summed up in 
order to form SACF 
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This overall structure bears a close resemblance to the 
mechanisms of human pitch perception, as modeled in [15]. A 
major difference here is that processing is done for subband 
amplitude envelopes instead of the signal fine structure. The 
SACF was then mean-normali zed to get real peaks step out better 

from the SACF. Mean normali zation was done with the following 
equation [9]: 
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Overview of whole system is shown in Figure 1. 
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Figure 1. System overview. 

2.2.3 Detection  
Since a quite short analysis frame (10ms) was used in extracting 
the feature stream, the lowest frequency components cause slight 
framing artefacts. These appear as a low-amplitude and high-
frequency ripple in the SACF, which is easil y removed using 
moving averaging. Also, a long-term trend caused by differences 
in signal levels within the ACF analysis window will be 
detrended from SACF using high pass filt ering. Thus obtained 
SACFs for different type of music are shown in Figure 2.  

As one can see from Figure 2, periodic drum events produce also 
a periodic SACF. In order to robustly detect this, SACF has to be 
enhanced in a manner ill ustrated in Figure 3. The original SACF 
curve is time-scaled by a factor of two and three and these two 
stretched curves are added to the original, resulting in the 
enhanced summary autocorrelation function (ESACF). Thus 
peaks at integer multiples of a fundamental tempo are used to 
enhance the peaks of a slower tempo. If the original SACF is 
periodic in nature, this technique produces clearer peaks. This 
technique has been earlier applied in [10]. 

The region of interest in the ESACF is determined by reasonable 
tempo limits. Lower limit was fixed to 35 beats per minute, and 
higher to 120 beats per minute. Whereas the upper limit may 
seem too tight, it should be noted that due to the above describe 
enhancement procedure, these limits actuall y corresponds to 35 
and 360 in SACF. This wide tempo range is essential because the 
rate of playing certain drum instruments (e.g. the hihat) is 
typicall y an integer multiple of tempo, and causes a clear peak in 
the SACF.  

Final detection is carried out by measuring the absolute 
maximum value within the given tempo limits. Maximum value 
distributions for segments with drums and without are presented 
in Figure 4. Distributions overlap to some extent, but 
nevertheless enable robust classification.  



 

 

S e g m e n t 
  w i t h o u t 

  d r u m s 

S w a n l a k e : 
  S p a n i s h   d a n c e   [ C l a s s i c a l ] 

S e g m e n t 
  w i t h 

  d r u m s 

S e g m e n t 
  w i t h o u t 

  d r u m s 

S t a r d u s t 
  -   M u s i c 

  s o u n d s   b e t t e r   w i t h 
  y o u   [ E l e c t r o n i c   /   D a n c e ] 

S e g m e n t 
  w i t h 

  d r u m s 

S e g m e n t 
  w i t h o u t 

  d r u m s 

E a g l e s 
  -   H o t e l 

  C a l i f o r n i a 
  [ R o c k 

  /   P o p ] 

S e g m e n t 
  w i t h 

  d r u m s  

Figure 2. Representative summary autocorrelations from 
different type of music (Tempo limits marked in the plots). 
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Figure 3. Enhancing the summary autocorrelation function. 
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Figure 4. Unit area normalized feature value distributions for 
both classes. 

 

2.3 Acoustic Pattern Recognition Approach 
As discussed above, drums have characteristic spectral energy 
distributions. The spectral energy of a bass drum is concentrated 
to lower frequencies. Cymbals and hihats occupy a wide 
frequency band, mainly concentrated to the treble end. The 
highest frequencies of the cymbals and hihats are so high that 
there are only a few other instruments, which have prominent 
frequency components in the same range (e.g. strings). Therefore 
drums make a significant contribution to the overall tone colour 
of musical signals. Based on this, we studied the abilit y of certain 
acoustic features to indicate the presence of drums in musical 
signals.  

2.3.1 Mel-frequency cepstral coefficients (MFCC) 
Mel-frequency cepstral coeff icients have been widely used to 
model speech and music signals. Foote has used cepstral 
representation in his content-based retrieval system [11]. Also Li 
et al. found MFCC to be generall y the best way to model audio 
signals [12]. We used 16 MFCC coeff icients, calculated in 20ms 
frames with ¼ overlap, as features for a classifier.  

MFCC is a short-term spectral feature and is able to represent the 
rough shape of the magnitude spectrum in a compact way [13]. 
First step of a MFCC feature extractor is preprocessing, which 
consists of pre-emphasizing, frame blocking and time domain 
windowing. After this, a discrete Fourier transform is calculated 
and the power spectrum is transformed to a mel-frequency scale. 
This is done by using a filt er bank consisting of triangular filt ers, 
spaced uniformly on the mel-scale. An approximation between 
frequency in hertz and in mel was given in Equation 2.  

Both static (MFCC) and delta coeff icients (∆MFCC) were used. 
Applying sinusoidal modeling as a preprocessing step before 
feature extraction was tried out, but it did not affect the overall 
performance as shown in Section 3.3.  

2.3.2 Gaussian Mixture Models (GMM) 
A Gaussian mixture density is able to approximate an arbitrary 
probabilit y distribution function (pdf) with a weighted sum of M 
multi variate Gaussian pdf’s [14,13]. The Gaussian mixture 
density with a model order M is given by 
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where x is a d-dimensional random vector, ( )xpi  are the M 
Gaussian pdf’s and iw  are the M mixture weights. The sum of the 

mixture weights is one and the pdf of the 
thi  d-variate normal 

distribution is given with ( )xpi . A GMM is completely 
represented with three parameters: the mean vectors, the 
covariance matrices, and the mixture weights. These three 
parameters are collectively represented with λ. The parameters 
are estimated using the Expectation Maximization (EM) 
algorithm so that the li kelihood of the data is maximized.  

The algorithm guarantees a monotonicall y non-decreasing 
li kelihood and it converges at least to a local maximum of the 
underlying li kelihood function. For a sequence of T data vectors, ( )TxxX ,...,1= , the GMM li kelihood is given as follows 
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In order to use GMM as a classifier, GMM parameters for each 
class must first be estimated from a training data set. In a 
classification phase, the probabilit y of each class for a given 
observation is evaluated and the class that gives the highest 
probabilit y is chosen as the classification result. 

2.3.3 k-Nearest Neighbour Classifier (k-NN) 
The k-NN classifier places the feature vectors of the training set 
in a feature space, and makes the classification decision by 
“voting” among the nearest k neighbors of the data vector to be 
classified. The voting is done by picking the k points nearest to 
the current test point, and the chosen class is the class that is 
most often picked.  
In this paper, Mahalanobis distance was used in determining the 
nearest neighbours. Also, the extracted features were processed 
before using them with this classifier. The mean and standard 
deviation of each feature are calculated within frames of 0.5 



 

seconds, and the mean and standard deviation are used in place 
of the original features. This doubles the amount of features, but 
significantly reduces the amount of feature vectors over time.  

3. Simulations 
3.1 Database 
A database of 397 entire musical pieces from different genres 
was used to evaluate the two drum detection schemes presented 
in this article. For each piece in the database, time segments with 
and without drums were manuall y annotated. Annotation was 
done with a precision of one second, and only stable segments of 
more than five seconds were used in simulations.  

“Presence of drums” was defined to include the requirement that 
the drum is played in a rhythmic role. Special care had to be 
taken with classical music. Kettledrum is used in many classical 
pieces, but not always in a rhythmic role. Kettledrum has to play 
a clear repeating pattern, not just to be used to emphasize a 
certain part of the piece, in order to accepted as a “drum” 
instrument. With breaks in modern electronic dance music, 
where drum track’s amplitude increases graduall y, the boundary 
was chosen based on when a human li stener perceived the 
presence of the drums. Detailed statistics of the database are 
shown in Table 1. 

Table 1. Statistics of the evaluation database.  

Genre % # of 
songs 

Drums 
absent 

Drums 
present 

Classical 27% 107 89% 11% 

Electronic / Dance 7% 27 18% 82% 

Hip Hop / Rap 3% 12 5% 95% 

Jazz / Blues 16% 64 10% 90% 

Rock / Pop  29% 115 11% 89% 

Soul / RnB / Funk 11% 45 8% 92% 

World / Folk 7% 27 56% 44% 

Total (over 28h)  397 32% 68% 

3.2 Test Setup 
As can be seen in Table 1, the evaluation database is not nicely 
balanced from the point of view of the amount of material with 
and without drums in each individual genre. Since drums are a 
basic element in many Western genres, this was expected. In 
order to assure that we have as balanced as possible train and test 
sets, following scheme was used: 

1. Pieces were divided into the seven main genres shown in 
Table 1.  

2. The seven main genres were further divided into three sub-
categories: pieces containing only segments where drums are 
present, pieces containing only segments where drums are 
absent, and pieces containing both segments 

3. Fifty percent of pieces in each sub-category were randomly 
selected to the training set, and the rest to the test set. 

4. An individual piece may appear only in the test or in training 
set, but not in both. 

3.3 Results 
3.3.1 Periodicity Detection Approach 
First an optimal weight vector to be used in the SACF 
formulation was determined (see Eq. 4). For this sake, a smaller 

test carried out. Test set was formed using scheme described in 
Section 3.2 but only 30% of pieces were chosen. Results are 
presented in Figure 5. Performance difference between the flat 
li ne (78.7%) and steep parabola (80.6 %) was quite small . 
However, the best performance is reached with equall y weighted 
lower and higher band and attenuation for center bands. So we 
fixed unit weight for both the highest and the lowest band, and 
1/100 weight for center band to be used in final simulations.  
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Figure 5. Effect of weighting before SACF. 

Fifty percent of the pieces were used to estimate feature value 
distributions for intervals with drums and without. Division 
between this distribution estimation set and final test set was 
done as described in Section 3.3. Obtained feature value 
distributions were presented earlier in Figure 4. Based on these 
distributions a threshold value for maximum value within 
periodicity limits was defined. Detection results obtained with 
this threshold value are shown in Table 2.  

Table 2. Results using periodicity detection.  

Genre Performance Drums 
absent 

Drums 
present 

Classical 83.2% 83.9% 78.1% 

Electronic / Dance 91.0% 61.4% 95.6% 

Hip Hop / Rap 87.3% 69.5% 88.0% 

Jazz / Blues  75.2% 38.2% 79.2% 

Rock / Pop  83.0% 81.6% 83.2% 

Soul / RnB / Funk 78.2% 79.5% 78.1% 

World / Folk 69.2% 51.9% 92.3% 

Total 81.3% 76.5% 83.4% 

 

Overall performance was 81.3%. The reason why the 
distrubutions of the two classes overlap rather much is that the 
stochastic residual contains harmonic components and beginning 
transients from other instruments, too, and in some cases these 
show very much drum-li ke periodicity. Thus the starting 
hypothesis that periodic stochastic components reveal drum 
events was still mainly right. More attention should be paid for 
the preprocessing system in order to make concluding remarks.  

 

3.3.2 Acoustic Pattern Recognition Approach 
In order to perform classification with Gaussian Mixture Models, 
training set feature vectors were used to estimate model 
parameters for the two classes, one model for music with drums 
and another for music without drums.  



 

We tested MFCCs alone as well MFCCs catenated with ∆MFCC 
as a feature vectors. In order to avoid numerical problems, the 
features were normali zed to have zero mean and unity variance, 
given by: 
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The results obtained with GMM-classifier are shown in Table 3. 
As one can see, the overall performance was slightly better than 
with the system periodicity detection approach. The performance 
difference between preprocessed signals and original signals was 
marginal. However, if we take a closer look to the results in 
Table 4, we will see that performance is not evenly distributed 
within different musical styles. Although a high performance is 
obtained for one class (e.g. drums present), the other fail s within 
the individual musical style. In other words, the system starts to 
recognize the musical style rather than the drums. This is clearly 
seen for classical music, for example. Due to the small amount of 
training material for e.g. classical music with drums, GMM was 
unable to model it effectively with one generic model for all 
genres with drums present.  

In order to prevent the above described problem, the number of 
GMM models was increased. For each musical style, two models 
were estimated: for intervals with drums and without. Since we 
are not interested in the musical style, genre was ignored in 
classification stage. So we were only interested in the set of 
models (drums are present or absent) from which we got the 
highest likelihood. The results are much better balanced than 
those obtained with just two models, as shown in Table 5.  

Table 3. Classification results with GMM. 

GMM 
model 
order 

MFCC with 
preprocessing 

MFCC+∆MFCC 
with preprocessing 

MFCC+∆MFCC 
without 
preprocessing 

4 81.9% 86.4% 86.0% 

8 82.9% 86.4% 86.9% 

12 83.5% 86.4% 86.1% 

16 83.4% 86.4% 86.1% 

24 83.7% 86.7% 86.9% 

Table 4. GMM results with two models.  
(MFCC + ∆∆MFCC, model order 24, 3-second test excerpts.) 

Genre Performance Drums 
absent 

Drums 
present 

Classical 89.9% 97.4% 38.6% 

Electronic / Dance 88.5% 48.9% 96.0% 

Hip Hop / Rap 93.8% 25.7% 98.3% 

Jazz / Blues 73.9% 58.0% 75.7% 

Rock / Pop  92.1% 67.7% 94.8% 

Soul / RnB / Funk 90.9% 76.9% 92.5% 

World / Folk 68.3% 47.9% 95.0% 

Total 86.7% 83.5% 88.2% 

 

 

 

 

Table 5. GMM results with two models for each genre. 
(MFCC + ∆∆MFCC, model order 24, 3-second test excerpts.) 

Genre Performance Drums 
absent 

Drums 
present 

Classical 85.6% 89.2% 61.0% 

Electronic / Dance 89.28 63.4% 94.7% 

Hip Hop / Rap 89.9% 25.7% 94.2% 

Jazz / Blues 70.9% 67.4% 71.3% 

Rock / Pop  89.0% 76.5% 90.4% 

Soul / RnB / Funk 91.8% 85.4% 92.5% 

World / Folk 66.0% 45.7% 92.7% 

Total 84.2% 80.2% 86.1% 

 

Figure 5 shows the overall performance of GMM as a function of 
the length of the signal excerpt used for classification. A 
reasonable performance (80 %) was achieved already with a 100 
ms test excerpt.  
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Figure 5. Effects of test sequence length with GMM-
classification.  

In addition to GMM-classifier, a k-NN classifier was also used to 
evaluate differences between classifiers. Train data and test was 
processed as described in Section 2.3.3.  The results are 
presented in Table 5. Performance k-NN is between GMM and 
periodicity system. Performance is unbalanced li ke it was with 
GMM. The performance is slightly improved by increasing the 
number of “voting” points, k. 

Table 5. Classification results for k-NN classifier. 

k Overall performance Drums  
absent 

Drums 
present 

1 80.0% 69.5% 84.8% 

5 83.4% 70.9% 89.2% 

 
3.3.3 Combination of the Two Approaches  
The two drum detection systems are based on different 
information, one on periodicity and the other on spectral features. 
One would thus guess that the combination of the two systems 
would perform more reliably than either of them alone. Fusion of 
the two systems was reali zed by combining their output 
li kelihoods. For periodicity detection, the li kelihood is obtained 
from the feature value distributions presented in Figure 3. For 
GMM, the li kelihoods are obtained as described in Section 
2.3.2.. The results are presented in Table 6. Only a minor 
improvement (1-2 %) was achieved, as can be seen. This is due 
to the fact that both of the systems typicall y misclassify within 
the same intervals. For example, jazz pieces where drums are 



 

played quite softly with brush, or ride cymbal is continuall y 
tapped are li kely to be misclassified with both systems. In some 
cases, the misclassification might be acceptable, since the drums 
are diff icult to detect even for a human li stener.  

Table 6. Comparison of results obtained earlier and by 
combining GMM (MFCC + ∆∆MFCC with GMM model order 24) 

and periodicity detection. 

Detection 
system 

Overall 
performance 

Drums  
absent 

Drums 
present 

Periodicity 
detection 

81.3% 76.5% 83.4% 

GMM 86.7% 83.5% 88.2% 

Combined 
detection 

88.0% 83.9% 90.1% 

4. SUMMARY AND CONCLUSIONS 
Two different drum detection schemes were described and 
evaluated. The obtained results are rather close to each other and, 
somewhat surprisingly, the combination performs only slightly 
better. This highlights a fact which was also validated by 
li stening: both system fail  in borderline cases that are diff icult, 
not just due to algorithmic artefacts. Achieved segmentation 
accuracy of the integrated system was 88 % over a database of 
varying musical genres. The misclassified intervals are more or 
less ambiguous by nature and in many cases might be tolerated 
by a user. In order to construct a substantiall y more accurate 
system, it seems that more compli cated sound separation and 
recognition mechanism would be required. In non-causal 
appli cations, longer analysis excerpts and the global context can 
be used to improve the performance. 
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