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ABSTRACT

A system is described which segments musical signals according
to the presence or absence of drum instruments. Two different yet
approximately equally acaurate goproaches were taken to solve
the problem. The first is based on periodicity detection in the
amplitude envelopes of the signal at subbands. The band-wise
periodicity estimates are a@gegated into a summary
autocorrelation function, the characteristics of which reved the
drums. The other mechanism applies graightforward acoustic
pattern recognition approach with mel-frequency cepstrum
coefficients as fedures and a Gausgan mixture model classfier.
The integrated system achieves 88 % correct segmentation over a
database of 28 hours of music from different musical genres. For
the both methods, errors occur for borderline cases with soft
percussvelike drum acocompaniment, or transient-like
instrumentati on without drums.

1. INTRODUCTION

Segmentation and analysis of musical signals has gained
increasing amounts of reseach interest in recent yeas
[1,2,11,12]. The presence/absence of drum instruments is an
important high-level descriptor for music dasdfication and
retrieval. In many cases, exactly expressble descriptors are more
efficient for information retrieval than more ambiguous concepts
such as musical genre. For example, someone might seach for
classcal music by requesting a piece with string instruments and
without drums. Information about the drums can aso be used in
audio editing, or in further analysis, e.g. in music transcription,
metrical analysis, or rhythm recogniti on.

The am of this paper is to present a drum detection system,
which would be & generic as possble. The problem of drum
detection in music is more difficult than what it seams at a first
glance. For a maor part of techno a rock/pop music, for
example, detection is more or lesstrivial. However, a detection
systems designed for these musical genres does not generali zed to
the others. Music contains a lot of cases that are much more
ambiguous. Drums go easily undetected in jazz/big band music,
where only hihat or cymbals are softly played at the background
On the other hand, erroneous detections may pop up for pieces
with acoustic sted-stringed guitar, pizzicato strings, cembalo, or
staccato piano accompaniment, to mention some examples.

Earlier work in the area of the aitomatic analysis of musical
rhythms has mostly concentrated on metrical analysis[14], andin
many cases for MIDI data. There ae a few exceptions, however.
Alghoniemy et al. used a narrowband filter at low frequencies to
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detect macro and micro scale periodicity [3]. Tzanetakis et al.
have used the Discrete Wavelet Transform to decompose the
signal into a number of bands and autocorrelation function to
detect the various periodicities of the signal’s envelope [1]. This
structure was used to extract feaures for musical genre
clasdfication. Soltau et al. have used HMMs with Neural
Networks to represent temporal structures and variations in
musical signals[2].

2. METHODS
2.1 Preprocessing with Sinusoidal M odeling

Drum instruments in Western music typically have a clea
stochastic noise component [4]. The spectral energy distribution
of the noise component varies, being wide for the snare drum,
and concentrated to high frequencies for cymbal sounds, for
example. In addition to the stochastic component, some drums
have strong harmonic vibration modes, and they have to be tuned.
In the case of tom toms, for example, approximately half of the
spectral energy is harmonic. Nevertheless these sounds are still
recogni zable based on the stochastic component only. Whil e most
other musical instruments produce chiefly harmonic energy and
we ae interested in the drums, an attempt was made to separate
the stochastic and harmonic signal components from eech other.

A sinusoids plus noise spectrum model was used to extract the
stochastic parts of acoustic musical signals. The model, described
in [5,6], estimates the harmonic parts of the signal and subtracts
them in time domain to dbtain a noise residual. Although some
harmonic components are not detected and beginning transients
of other instruments le& through, the residual signa in general
has dgnificantly better “drums-vs-other” ratio than the inpu
signal.

2.2 Periodicity Detection Approach

Periodicity is characteristic for musical rhythms. Drum events
typically form a pattern which is repeaed and varied over time.
As a consequence, the time-varying power spectrum of the signal
shows clea correlation with a time shift equal to the pattern
length in the drum track. We propose that the presence of drums
can be detected by measuring this correlation in musical signals.
This evaluates a backgroundng hypothesis that periodicity of
stochastic signal components is a universaly characteristic of
musical signals with drums. In order to all eviate the interference
of other musical instruments, periodicity measurement is
performed in the residual signal after preprocessng with a
sinusoidal model.



2.2.1 Feature Stream

A signal model was employed which dscards the fine structure of
signals, but preserves their rough spectral energy distribution.
Band energy ratio (BER) is defined as the ratio of the energy at a
certain frequency band to the total energy. Thus the BER for the
i"™ subbandin time frameKkis:
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where S is the set of Fourier transform coefficients belonging to

the i™ subband [7]. Feaure vectors are extracted from the
preprocessed signal.

Human auditory perception does not operate on a linea
frequency scale. Therefore we gply a filter bank consisting of
triangular filters gaced uriformly on the mel-scale. An
approximation between a frequency value in Hertz and in mel is
given as: [§]
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Feaures were etracted in 10 ms analysis windows (Hanning
windowing) and with 50% overlap. Short window length was
preferred to achieve a better time resolution in the
autocorrelation calculations later on. The amount of 16 frequency
bands was found to gve sufficient resolution in frequency
domain. Obtained fedure vectors form a fedure stream C(j, k),
which is aubject for autocorrelation function cal culations.

Mel(f)=25950g, 1+

2.2.2 Summary Autocorrelation Function

At each frequency band, an autocorrelation function (ACF) is
calculated over the BER values within a sliding analysis window.
Analysis window length of three seconds was chosen to capture a
few patterns of even the slowest rhythms. Autocorrelation
function of aK-Iength excerpt of C(i,k) at bandi is given by:
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where 1 is the lag. Pe&s in the aitocorrelation function

correspond to the lags where the time-domain signal has gronger
periodicity.

(i, k+[z]) ©)

Despite the preprocesdng, also aher instruments cause pe&s to
the bandwise aitocorrelation functions. Fortunately, however, the
spectrum of the other instruments tends to concentrate to the mid-
bands, whereas drums are more prominent at the low or high
bands (there ae exceptions from this rule, e.g. the violin or the
snare drum). On the basis of this observation we will weight
bands differently before forming the summary autocorrelation
function (SACF). Lower and higher bands are assgned egual
weights and mid-bands have ae stegly attenuated.
Autocorrelation functions are weighted and then summed upin
order to form SACF

Bands
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This overal structure beas a close resemblance to the
mechanisms of human pitch perception, as modeled in [15]. A
major difference here is that processng is done for subbend
amplitude envelopes instead of the signal fine structure. The
SACF was then mean-normali zed to get red peaks dep out better

from the SACF. Mean normali zation was done with the foll owing
equation [9]:
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Figure 1. System overview.

2.2.3 Detection

Since aquite short analysis frame (10ms) was used in extracting
the feaure stream, the lowest frequency components cause sli ght
framing artefacts. These gpea as a low-amplitude and high-
frequency ripple in the SACF, which is easily removed uwsing
moving averaging. Also, a long-term trend caused by differences
in signa levels within the ACF anaysis window will be
detrended from SACF using high passfiltering. Thus obtained
SACFsfor different type of music are shown in Figure 2.

As one can seefrom Figure 2, periodic drum events produce dso
aperiodic SACF. In order to robustly detect this, SACF has to be
enhanced in a manner ill ustrated in Figure 3. The original SACF
curve is time-scaled by a factor of two and three and these two
stretched curves are alded to the original, resulting in the
enhanced summary autocorrelation function (ESACF). Thus
pess at integer multiples of a fundamental tempo are used to
enhance the pe&ks of a slower tempo. If the origina SACF is
periodic in neture, this technique produces cleaer pe&ks. This
technique has been ealier applied in [10].

The region of interest in the ESACF is determined by reasonable
tempo limits. Lower limit was fixed to 35 kedas per minute, and
higher to 120 teas per minute. Whereas the upper limit may
seam too tight, it should be noted that due to the éove describe
enhancement procedure, these limits actually corresponds to 35
and 360in SACF. This wide tempo range is esential because the
rate of playing certain drum instruments (e.g. the hihat) is
typically an integer multi ple of tempo, and causes aclea pe&k in
the SACF.

Final detection is carried out by measuring the ésolute
maximum value within the given tempo limits. Maximum value
distributions for segments with drums and without are presented
in Figure 4. Distributions overlap to some etent, but
neverthelessenable robust clasgfication.
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Eagles - Hotel California[Rock / Pop]
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Figure 2. Representative summary autocorr elations from
different type of music (Tempo limits marked in the plots).
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Figure 3. Enhancing the summary autocorrelation function.
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Figure 4. Unit area normalized feature value distributions for
both classes.

2.3 Acougtic Pattern Recognition Approach

As discussd above, drums have characteristic spectral energy
distributions. The spectral energy of a bassdrum is concentrated
to lower frequencies. Cymbals and hhats ocaupy a wide
frequency band, mainly concentrated to the treble end. The
highest frequencies of the cymbals and hhats are so high that
there ae only a few other instruments, which have prominent
frequency components in the same range (e.g. strings). Therefore
drums make asignificant contribution to the overall tone colour
of musical signals. Based on this, we studied the aility of certain
acoustic feaures to indicate the presence of drums in musical
signals.

2.3.1 Mé-frequency cepstral coefficients (MFCC)
Mel-frequency cepstral coefficients have been widely used to
model speech and music signals. Foae has used cepstra
representation in his content-based retrieval system [11]. Also Li
et a. found MFCC to be generally the best way to model audio
signals [12]. We used 16 MFCC coefficients, calculated in 20ms
frames with ¥, overlap, as feaures for a classfier.

MFCC is a short-term spectral feaure andis able to represent the
rough shape of the magnitude spectrum in a compact way [13].
First step of a MFCC feaure extractor is preprocessng, which
consists of pre-emphasizing, frame blocking and time domain
windowing. After this, a discrete Fourier transform is calcul ated
and the power spectrum is transformed to a mel-frequency scale.
This is done by using a filter bank consisting o triangular filters,
spaced uriformly on the mel-scale. An approximation between
frequency in hertz and in mel was given in Equation 2

Both static (MFCC) and delta coefficients (AMFCC) were used.
Applying sinusoidal modeling as a preprocessng step before
feaure extraction was tried out, but it did not affect the overall
performance & shown in Section 3.3.

2.3.2 Gaussian Mixture Models (GMM)

A Gaussan mixture density is able to approximate an arbitrary
probability distribution function (pdf) with a weighted sum of M
multivariate Gaussan pd’s [14,13]. The Gaussan mixture
density with amodel order M is given by

pbiA)= 3w (9 Q

where x is a d-dimensional random vector, p,(x) are the M
Gausdan pd’sand w, are the M mixture weights. The sum of the

mixture weights is one and the pdf of the i" d-variate normal
distribution is given with p(x). A GMM is completely
represented with three parameters: the mean vectors, the
covariance matrices, and the mixture weights. These three
parameters are coll ectively represented with A. The parameters
are etimated using the Expectation Maximization (EM)
algarithm so that the likelihood of the data is maximized.

The dgaithm guarantees a monotonically non-decreasing
likelihood and it converges at least to a local maximum of the
uncerlying likelihood function. For a sequence of T data vectors,
X =(X,,....x; ), the GMM likelihoad is given as foll ows

.
p(x|A)= 7 plx[2) ™
t=1

In order to use GMM as a clasdfier, GMM parameters for each
class must first be estimated from a training data set. In a
classfication phese, the probability of each class for a given
observation is evaluated and the class that gives the highest
probability is chosen as the classfication result.

2.3.3 k-Nearest Neighbour Classifier (k-NN)

The k-NN classfier places the feaure vectors of the training set
in a feaure space, and makes the classfication decision by
“voting” among the neaest k neighbors of the data vector to be
clasdfied. The voting is done by picking the k points neaest to
the current test point, and the chosen class is the class that is
most often picked.

In this paper, Mahalanobis distance was used in determining the
neaest neighbours. Also, the extracted feaures were processed
before using them with this classfier. The mean and standard
deviation of each fedure ae calculated within frames of 0.5



seconds, and the mean and standard deviation are used in place
of the original feaures. This doubles the anount of feaures, but
significantly reduces the amount of feaure vectors over time.

3. Simulations
3.1 Database

A database of 397 entire musical pieces from different genres
was used to evaluate the two drum detection schemes presented
in this article. For each piece in the database, time segments with
and without drums were manually annotated. Annotation was
done with a precision of one second, and only stable segments of
more than five seconds were used in simulations.

“Presence of drums’ was defined to include the requirement that
the drum is played in a rhythmic role. Special care had to be
taken with clasdcal music. Kettledrum is used in many classcal
pieces, but not always in a rhythmic role. Kettledrum has to play
a clea repeding pattern, not just to be used to emphasize a
certain part of the piece, in order to acoepted as a “drum’
instrument. With bre&ks in modern electronic dance music,
where drum track’s amplitude increases gradually, the boundary
was chosen based on when a human listener perceived the
presence of the drums. Detailed statistics of the database ae
shown in Table 1.

Table 1. Statistics of the evaluation database.

Genre % # of Drums Drums

songs absent present
Classcal 27% | 107 8% 11%
Electronic / Dance 7% 27 18% 82%
Hip Hop / Rap 3% 12 5% 95%
Jazz | Blues 16% | 64 10% 90%
Rock / Pop 2% | 115 11% 8%
Soul / RnB/Funk | 11% | 45 8% 92%
World / Folk 7% 27 56% 44%
Total (over 28h) 397 32% 68%

3.2 Test Setup

As can be seen in Table 1, the evaluation database is not nicely
balanced from the point of view of the anount of material with
and without drums in each individual genre. Since drums are a
basic element in many Western genres, this was expected. In
order to asaure that we have & balanced as possble train and test
sets, foll owing scheme was used:

1. Pieces were divided into the seven main genres down in
Table 1.

2. The seven main genres were further divided into three sub-
categaries. pieces containing anly segments where drums are
present, pieces containing anly segments where drums are
absent, and peces containing both segments

3. Fifty percent of pieces in each sub-category were randomly
selected to the training set, and the rest to the test set.

4. Anindvidua piece may appea only in the test or in training
set, but not in both.

3.3 Reaults

3.3.1 Periodicity Detection Approach
First an optimal weight vector to be used in the SACF
formulation was determined (see Eq. 4). For this sake, a smaller

test carried out. Test set was formed using scheme described in
Section 32 bu only 30% of pieces were chosen. Results are
presented in Figure 5. Performance difference between the flat
line (78.7%) and steeg parabola (80.6 %) was quite small.
However, the best performance is reached with equall y weighted
lower and hgher band and attenuation for center bands. So we
fixed unit weight for both the highest and the lowest band, and
1/100weight for center band to be used in final simulations.
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Figure 5. Effect of weighting before SACF.

Fifty percent of the pieces were used to estimate feaure value
distributions for intervals with drums and without. Division
between this distribution estimation set and final test set was
done & described in Section 33. Obtained feaure value
distributions were presented ealier in Figure 4. Based on these
distributions a threshold value for maximum value within
periodicity limits was defined. Detection results obtained with
this threshold value ae shown in Table 2.

Table 2. Results using periodicity detection.

Genre Performance Drums Drums

absent present
Classcal 83.2% 83.9% 781%
Electronic/ Dance 91.0% 614% 95.6%
Hip Hop / Rap 87.3% 69.5% 88.0%
Jazz | Blues 75.2% 38.2% 79.2%
Rock / Pop 83.0% 816% 83.2%
Soul / RnB / Funk 78.2% 79.5% 781%
World / Folk 69.2% 519% 92.3%
Total 81.3% 76.5% 83.4%

Overal performance was 813%. The reasson why the
distrubutions of the two classes overlap rather much is that the
stochastic residual contains harmonic components and beginning
transients from other instruments, too, and in some cases these
show very much drum-like periodicity. Thus the starting
hypothesis that periodic stochastic components reved drum
events was still mainly right. More dtention should be paid for
the preprocessng system in order to make concluding remarks.

3.3.2 Acoustic Pattern Recognition Approach

In order to perform classfication with Gausdan Mixture Models,
training set feaure vectors were used to estimate model
parameters for the two classes, one model for music with drums
and another for music without drums.



We tested MFCCs alone & well MFCCs catenated with AMFCC
as a fedure vectors. In order to avoid numerical problems, the
feaures were normalized to have zero mean and urity variance,

given hy:
g, =26 "M 7

Oy

The results obtained with GMM -clasdfier are shown in Table 3.
As one can seeg the overall performance was dightly better than
with the system periodicity detection approach. The performance
difference between preprocessed signals and original signals was
marginal. However, if we take acloser lodk to the results in
Table 4, we will seethat performance is not evenly distributed
within dfferent musical styles. Although a high performance is
obtained for one class(e.g. drums present), the other fail s within
the individual musical style. In other words, the system starts to
recognize the musical style rather than the drums. Thisis clealy
seen for clasdcal music, for example. Due to the small amount of
training material for e.g. classcal music with drums, GMM was
unable to model it effectively with one generic model for all
genres with drums present.

In order to prevent the aove described problem, the number of
GMM models was increased. For each musical style, two models
were estimated: for intervals with drums and without. Since we
are not interested in the musical style, genre was ignored in
clasdfication stage. So we were only interested in the set of
models (drums are present or absent) from which we gat the
highest likelihood. The results are much better balanced than
those obtained with just two models, as shown in Table 5.

Table 3. Classification resultswith GMM.

GMM MFCC with | MFCC+AMFCC MFCC+AMFCC
mode preprocessng with preprocessng | without
order preprocessng
4 81.9% 86.4% 86.0%
8 82.9% 86.4% 86.9%
12 83.5% 86.4% 86.1%
16 83.4% 86.4% 86.1%
24 83.7% 86.7% 86.9%

Table4. GMM results with two models.
(MFCC + AMFCC, model order 24, 3-second test excer pts.)

Genre Performance Drums Drums

absent present
Classca 89.9% 97.4% 38.6%
Electronic/ Dance 88.5% 48.9% 96.0%
Hip Hop / Rap 93.8% 25.7% 98.3%
Jazz | Blues 73.9% 58.0% 75.7%
Rock / Pop 92.1% 67.7% 94.8%
Soul / RnB / Funk 90.9% 76.9% 92.5%
World / Folk 68.3% 47.9% 95.0%
Total 86.7% 83.5% 88.2%

Table5. GMM results with two models for each genre.
(MFCC + AMFCC, model order 24, 3-second test excer pts.)

Genre Performance Drums Drums

absent present
Classca 85.6% 89.2% 61.0%
Electronic/ Dance 89.28 63.4% 94.7%
Hip Hop / Rap 89.9% 25.7% 94.2%
Jazz | Blues 70.9% 67.4% 713%
Rock / Pop 89.0% 76.5% 90.4%
Soul / RnB / Funk 91.8% 85.4% 92.5%
World / Folk 66.0% 45.7% 92.7%
Total 84.2% 80.2% 86.1%

Figure 5 shows the overall performance of GMM as a function of
the length of the signal excerpt used for clasdfication. A
reasonable performance (80 %) was achieved already with a 100
ms test excerpt.
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Figure 5. Effects of test sequence length with GMM -
classification.

In addition to GMM -clasdfier, a k-NN classfier was also used to
evaluate differences between classfiers. Train data and test was
procesed as described in Section 23.3. The results are
presented in Table 5. Performance k-NN is between GMM and
periodicity system. Performance is unbalanced like it was with
GMM. The performance is dightly improved by increasing the
number of “voting” points, k.

Table5. Classification resultsfor k-NN classifier.

k Overall performance Drums Drums
absent present

80.0% 69.5% 84.8%

5 83.4% 70.9% 89.2%

3.3.3 Combination of the Two Approaches

The two drum detection systems are based on dfferent
information, one on periodicity and the other on spectral feaures.
One would thus guess that the combination of the two systems
would perform more reliably than either of them alone. Fusion of
the two systems was redized by combining their output
likelihoods. For periodicity detection, the likelihood is obtained
from the feaure value distributions presented in Figure 3. For
GMM, the likelihoods are obtained as described in Section
2.3.2.. The results are presented in Table 6. Only a minor
improvement (1-2 %) was achieved, as can be seen. This is due
to the fact that both of the systems typically misclassfy within
the same intervals. For example, jazz pieces where drums are



played qute softly with brush, or ride cymbal is continualy
tapped are likely to be misclassfied with both systems. In some
cases, the misclasdfication might be acceptable, since the drums
are difficult to detect even for a human listener.

Table 6. Comparison of results obtained earlier and by
combining GMM (MFCC + AMFCC with GMM mode! order 24)
and periodicity detection.

Detection Overall Drums Drums
system performance absent present
Periodicity 81.3% 76.5% 83.4%
detection

GMM 86.7% 83.5% 88.2%
Combined 88.0% 83.9% 90.1%
detection

4. SUMMARY AND CONCLUSIONS

Two different drum detection schemes were described and
evaluated. The obtained results are rather close to each other and,
somewhat surprisingly, the combination performs only slightly
better. This highlights a fact which was aso validated by
listening: both system fail in borderline cases that are difficult,
not just due to algorithmic artefacts. Achieved segmentation
acauracy of the integrated system was 88 % over a database of
varying musical genres. The misclassfied intervals are more or
less ambiguous by nature and in many cases might be tolerated
by a user. In order to construct a substantially more acurate
system, it seems that more complicated sound separation and
recognition mechanism would be required. In non-causa
applications, longer analysis excerpts and the global context can
be used to improve the performance.

5. ACKNOWLEDGMENTS

The feaure extractors and classfiers were developed with Antti
Eronen. Our MFCC anaysis was based on Saney's
implementation  (http://rvl4.ecn.purdue.edu/~mal colm/interval/
1998010). Sinusoidals plus noise spectrum modeling tods were
kindy provided by Tuomas Virtanen.

6. REFERENCES

[1] Tzanetakis,G., Esd, G. and Cook, P. Automatic musical
genre clasdfication of audio signals, In International
Symposium on Musical Information Retrieval, 2001

[2] Soltau,H., Schultz,T., Westphal, M. and Waibel, A.
Recognition of music types, In Proc. International
Conference on Acoustic, Speech, and Signal Processng,
Lansdowne, Virginia, February 1998

[3] Alghoniemy, M., Tewfik, A.H., Rhythm and periodicity
detection in polyphonic music, In Proc. IEEE Third
Workshop on Multimedia Signal Processng, Denmak,
September 1999 185-190.

[4] Fletcher, N. H. and Rossng, T. D., The Physics of Musical
Instruments. Springer-Verlag, New York, 1991

[5] Virtanen, T., Audio signal modeli ng with sinusoids plus
noise. Master’ s thesis, Department of Information
Technology, Tampere University Of Technology, 2000

[6] Serra and Xavier, Musical SoundModeling with Sinusoids
plus Noise. Roads C. & Pope S. & Piciali G. & De Pali G.
(eds). Musical Signal Processng. Swets & Zeitli nger
Publi shers.

[7] Peltonen,V., Computational Auditory Scene Recognition. In
Proc. International Conference on Acoustic, Speech, and
Signal Processng, Orlando, Florida, May 2002

[8] Moare, B.C.J. (Ed.), Heaing — Handbook of Perception and
Cognition, New York: Academic Press 1995

[9] Cheveigne and Kawahara. YIN afundamental estimator for
speech and music. JASA.

[10] Tolonen, T. and Karjalainen, M., A computationally
efficient multi pitch analysis model, IEEE Transactions on
Speech and Audio Processng, Val. 8, No. 6, Nov. 200Q

[11] Foate, J. , Content-based retrieval of music and audio,
Proceedings of SAE, 138147, 1997

[12] Li,D. , Sethi,l.K. , Dimitrova,N., and McGeeT.
Clasdfication of general audio data for content-based
retrieval. Pattern Recogniti on Letters, 25(5):533-544, April
2001

[13] Rabiner, L. and Juang B-H. , Fundamentals of Speech
Recognition, Englewoad Cliffs/NJ, Prentice-hall, 1993

[14] Reynolds,D. And Rose,R. Robust Text-Independent Spedker
Identification Using Gaussan Mixture Spegker Models.
IEEE Transactions on Speech and Audio Processng,
3(1):72-83, 1995

[15] Scheirer, E.D., Tempo and kea analysis of acoustic musical
signals, J. Acoust. Soc. Am. 103(1), 1998 558601

[16] Meddis, R., Hewitt M.J., Virtual pitch and phase sensitivity
of acomputer model of the auditory periphery. I: Pitch
identification, J. Acoust. Soc. Am. 89 (6), June 1991



