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ABSTRACT

This paper proposes a novel approach to musical instru-
ment recognition in polyphonic audio signals by using a
source-filter model and an augmented non-negative matrix
factorization algorithm for sound separation. The mixture
signal is decomposed into a sum of spectral bases modeled
as a product of excitations and filters. The excitations are
restricted to harmonic spectra and their fundamental fre-
quencies are estimated in advance using a multipitch esti-
mator, whereas the filters are restricted to have smooth fre-
quency responses by modeling them as a sum of elemen-
tary functions on the Mel-frequency scale. The pitch and
timbre information are used in organizing individual notes
into sound sources. In the recognition, Mel-frequency cep-
stral coefficients are used to represent the coarse shape of
the power spectrum of sound sources and Gaussian mix-
ture models are used to model instrument-conditional den-
sities of the extracted features. The method is evaluated
with polyphonic signals, randomly generated from 19 in-
strument classes. The recognition rate for signals having
six note polyphony reaches 59%.

1. INTRODUCTION

The majority of research on the automatic recognition of
musical instruments until now has been made on isolated
notes or on excerpts from solo performances. A compre-
hensive review of proposed approaches on isolated note
based recognition can be found in [1]. In recent years,
there has been increasing research interest on more de-
manding and realistic multi-instrumental polyphonic au-
dio. Most of the proposed techniques extract acoustic fea-
tures directly from the signal, avoiding the source separa-
tion [2,3].

In polyphonic mixtures consisting of multiple instru-
ments, the interference of simultaneously occurring sounds
is likely to limit the recognition performance. The inter-
ference can be reduced by first separating the mixture into
signals consisting of individual sound sources. In addition
to the analysis of mixtures of sounds, sound source sepa-
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ration has applications in audio manipulation and object-
based coding.

Many sound source separation algorithms aim at sepa-
rating the most prominent harmonic sound from the mix-
ture. Usually they first track the pitch of the target sound
and then use the harmonic structure and sinusoidal model-
ing in the separation. A separation system based on this ap-
proach has been found to improve the accuracy of a singer
identification in background music [4,5]. Sinusoidal com-
ponents can also be grouped based on grouping cues such
as common onset times, and the recognition can be done
using the amplitudes of the grouped sinusoidal partials [6].
Instrument-specific harmonic models trained
using instrument-specific material can achieve separation
and recognition simultaneously [7].

Recently, many separation algorithms have been pro-
posed which are based on matrix factorization of the mix-
ture spectrogram. The methods approximate the magni-
tude x;(k) of the mixture spectrum in frame ¢ and at fre-
quency k as a weighted sum of basis functions as

M
2(k) = gm.ibm (k) (0
m=1

where g, ; is the gain of basis function m in frame ¢, and
bm(k), m = 1,..., M are the bases. This means that
the signal is represented as a sum of components having
a fixed spectrum and a time-varying gain. The decomposi-
tion can be done, e.g., using independent component anal-
ysis (ICA) or non-negative matrix factorization (NMF), the
latter usually leading to a better separation quality [8]. The
advantage of the methods is their ability to learn the spec-
tral characteristics of each source from a mixture, enabling
separation of sources which overlap in time and frequency.
Instrument recognition systems based on the decomposi-
tion obtained with ICA have extracted the features from
the estimated spectral basis vectors [9] or from the recon-
structed time-domain signals [10].

A shortcoming of the basic spectrogram decompositions
is that each pitch of each instrument has to be represented
with a unique basis functions. This requires a large amount
of basis functions, making the separation and classifica-
tion difficult. Virtanen and Klapuri [11] proposed to model
each spectral basis vector as a product of an excitation and
a filter. The excitation models the time-varying pitch pro-
duced by a vibrating element such as a string, which can
be shared between instruments, whereas the filter models
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Figure 1. System overview.

the unique resonant structure of each instrument. To im-
prove the performance of the method, FitzGerald proposed
to model the excitations of different fundamental frequen-
cies explicitly as a sum of sinusoids at the harmonic fre-
quencies [12]. Badeau et al. [13] used also a harmonic
model for the excitation, but they modeled the filter us-
ing a moving-average model, resulting in a smooth fre-
quency response. Vincent et al. [14] modeled the spec-
tral basis vectors as a weighted sum of harmonically con-
strained spectra having a limited frequency support. In this
model the weights of each frequency band parametrized
the rough spectral shape of the instrument.

In this paper, we present a novel approach to sound sep-
aration by using source-filter model in the context of mu-
sical instrument recognition. The mixture signal is decom-
posed into a sum of spectral bases modeled as a product of
excitations and filters. The excitations are restricted to har-
monic spectra and their fundamental frequencies are esti-
mated in advance using a multiple pitch estimator, whereas
the filters are restricted to have smooth frequency responses
by modeling them as a sum of elementary functions on
Mel-frequency scale. The pitch and timbre information
are used in organizing individual notes into sound sources
(“streaming”). Separated streams are recognized with a
Gaussian mixture model (GMM) classifier. The system
is evaluated with randomly mixed polyphonic signals us-
ing the Real World Computing (RWC) database [15] and
sounds from 19 different instruments.

2. METHOD

An overview of the system is shown in Figure 1. Multi-
pitch estimation is first employed to estimate the pitches
in each analysis frame. The estimated pitches are used
in the streaming algorithm to form temporally continuous
streams of notes. Signals corresponding to individual
sources are estimated using NMF for source-filter model.
Features are extracted from the signals and they are clas-
sified using a GMM classifier. These processing steps are
explained in detail in the following.
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Figure 2. An example excitation spectrum e, (k) corre-
sponding to pitch value 800 Hz. The entire spectrum is
shown on the left and a closer view of a small portion of it
on the right.

2.1 Signal model

In the proposed signal model, each basis b,, (k) in (1) is
expressed as a product of an excitation spectrum e,, ¢ (k)
and a filter h; (k). This leads to the model

N I
2 (k) = Z Zgn,i,tenﬂt(kjhi(k) 2
n=1i=1

for the magnitude x;(k) of the discrete Fourier transform
x4 (k) of Hamming-
windowed signal in frame ¢. The excitations e, ; (k) are as-
sumed to correspond to the pitch values of individual notes
n=1,...,N attimes t = 1,...,T, and the filters h;(k)
are assumed to correspond to the spectral shapes of instru-
ments ¢ = 1,..., /. We model only magnitude spectra of
the excitations and filters, and therefore they restricted to
non-negative real values. All combinations of excitations
and filters are allowed, since we do not know in advance
which instrument has produced which note. A polyphonic
signal consists of several excitation and filter combinations
occurring simultaneously or in sequence.

The excitations e,, (k) are generated based on pitch
values obtained from a multipitch estimator. For simplic-
ity, we assume that the number of notes (pitch values) IV is
the same in all frames ¢. The multipitch estimator finds the
pitches F;(n),n =1,..., N in each frame ¢, and based on
these, the corresponding excitation spectra ey, + (k) are cal-
culated which consist of sinusoidal components with unity
amplitudes at integer multiples of the corresponding pitch,
Fi(n). Figure 2 shows the excitation spectrum correspond-
ing to pitch 800 Hz. Variation in amplitude appears in the
figure since the partial frequencies do not fall exactly on
spectral bins.

The filter h;(k) is further represented as a linear combi-
nation of fixed elementary responses:

J
hi(k) =) cija; (k) 3)
j=1

where we chose the elementary responses a;(k) to con-
sist of triangular bandpass magnitude responses, uniformly

distributed on the Mel-frequency scale fyrel = 2595 log; (14

f12/700). The bases are illustrated in Fig. 3.
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Figure 3. The elementary responses used to represent
the filters h;(k). Triangular responses are uniformly dis-
tributed on the Mel-frequency scale.

Substituting (3) to (2) gives the final signal model

N I J
Eo(k) =D gnisent(k) Y cijaj(k) ()
j=1

n=11i=1

In this model, e, (k) are obtained as described above,
a;(k) are fixed in advance, and therefore only g, ;; and
¢;,; remain to be estimated using the proposed augmented
NMF algorithm. The coefficients c; ; determine the spec-
tral shape (filter) of instrument ¢, ¢ = 1,...,1, and the
gains g, ; ; determine the amount of contribution from in-
strument ¢ to note n at time ¢. Note that all instruments
are allowed to play the same note simultaneously. Further
constraints to associate each excitation with only one filter
(instrument) are described in Sec. 2.3.

The amount of parameters to estimate is much smaller
in the proposed model (4) than in the traditional model (1).
This is because the traditional model practically requires a
separate basis spectrum for each pitch/instrument combi-
nation. In the proposed model, the different notes coming
from instrument ¢ are represented by a single basis function
(filter) h;(k), multiplied by the excitation spectra e,, ;(k)
to produce different pitch values. The smaller amount of
parameters improves the reliability of the estimation. Fur-
thermore, in the traditional model, the bases b, (k) have to
be clustered to their respective sources after the estimation,
whereas in the proposed model this takes place automati-
cally.

2.2 Estimating the excitation spectra e,, ; (k)

The multipitch estimator proposed by Klapuri in [16] is
used to estimate the note pitches Fy(n), n = 1,..., N in
each analysis frame ¢. Figure 4 illustrates the output of
the multipitch estimator for a polyphonic signal consist-
ing of four simultaneous sounds. Based on the pitch value
F,(n), the corresponding excitation e,, ,(k) is constructed
which consists of Hamming-windowed sinusoidal compo-
nents at integer multiples of the pitch value F;(n). These
“harmonic combs” extend over the entire frequency range
considered and have a unity magnitude for all the harmon-
ics. An example excitation spectrum is shown in Figure 2.

2.3 Streaming algorithm to link excitations with filters

In the described model, all combinations of excitations and
filters are allowed. In other words, all instruments (filters)
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Figure 4. Output of the multipitch estimator for a mixture
signal consisting of four simultaneous sounds.

1 can play all the detected notes (excitations) n simultane-
ously. In a realistic situation, however, it is more likely that
each note is played by one instrument and only occasion-
ally two or more instruments play the same note.

Parameter g,, ; ; controls the salience of each excitation
and filter combination in each frame. Robustness of the
parameter estimation can be improved if the excitations
en,t (k) can be tentatively organized into “streams”, where
a stream consists of the successive notes (excitations) com-
ing from a same instrument (filter). Here stream ¢ corre-
sponds to the instrument ¢ and we assume that the number
of simultaneous notes NN is equal to the number of filters
I. The output of the streaming is a label sequence ¢;(n),
where ¢;(n) = i indicates that the note (excitation) n at
time ¢ comes from instrument ¢. Even though the stream
formation algorithm described here is imperfect, it is very
helpful in initializing the augmented NMF algorithm that
will be described in Sec. 2.4.

Let us introduce a state variable ¢; that corresponds to
a certain stream-labelling of the excitations ey, +(k), n =
1,..., N attime ¢t. The number of different labellings (and
states) is equal to I!, that is, the number of different permu-
tations of numbers 1, ..., I. For convenience, the different
permutations of numbers 1, ..., I are stored as columns in
a matrix [U],, 4 of size (N x I!).

A candidate solution to the streaming problem can be
represented as a sequence of states Q = (q1g2...97).
The goodness of a candidate state sequence Q is defined
so that it is proportional to the cumulative frame-to-frame
variation of acoustic features extracted within each stream.
Two types of acoustic feature vectors z;(n) were investi-
gated: pitch (z;(n) = Fi(n)) and Mel-frequency cepstral
coefficients (MFCCs) calculated from a spectrum that was
constructed by picking only the spectral components corre-
sponding to the harmonic partials of excitation n from the
mixture spectrum z (k). More exactly, the goodness T of
a candidate solution Q given the features z;(n) is defined
by

T

Q[ {z: (n)}lzT,lzN) =(q1) Hv(thqtq) )

t=2

where the frame-to-frame feature similarity is calculated
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The above goodness measure basically assumes that FOs of
consecutive sounds coming from the same instrument usu-
ally have only small variations, or using MFCC features,
that the spectral shapes of consecutive sounds from a same
instrument are similar. Initial goodness values v(q;) are
defined to be zero for all other states except for g; = 1 for
which we set y(¢q; = 1) = 1. This removes the ambiguity
related to the ordering of different streams.

Qt\Qt 1

The most likely sequence Q = (g1¢2 . .. ¢r) given the
observed features z; (n) is a search problem
Q = argmax QU a (Whpn) )

which can be straightforwardly solved using the Viterbi al-
gorithm. The output of the streaming (associating each ex-
citation with only one filter) is not fixed rigidly, but is used
in initializing the NMF parameter estimation algorithm, as
will be described below.

2.4 NMF algorithm for parameter estimation

The spectra h; (k) can be viewed as the magnitude responses
of the filters, and therefore it is natural to restrict them to
be entrywise non-negative. This is achieved using non-
negative coefficients ¢; ;. Furthermore, the model can be
restricted to be purely additive by limiting the gains g, ;¢
to be non-negative. NMF estimates the bases and their
gains by minimizing the reconstruction error between the
observed magnitude spectrogram x4 (k) and the model Z; (k)
while restricting the parameters to non-negative values.
Commonly used measures for the reconstruction error

are the Euclidean distance, and divergence d, defined as

+(k
th log = k; —

The divergence is always non-negative, and zero only when
x¢(k) = &,(k) for all k and ¢. An algorithm that minimizes
the divergence for the traditional signal model (1) has been
proposed by Lee and Seung [17]. In their algorithm, the
parameters are initialized to random non-negative values,
and updated by applying multiplicative update rules itera-
tively. Each update decreases the value of the divergence.

We propose an augmented NMF algorithm for estimat-
ing the parameters of the model (4). Multiplicative updates
which minimize the divergence (8) are given by

Zn,t,k T.t(k)gn,i,ten,t(k)aj (k)

ze(k) + 2(k)  (8)
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where (k) = 7 EZ; is evaluated using (4) before each up-

date. The overall estimation algorithm is given as follows:

1. Estimate excitations e, (k) using multipitch esti-
mator and the procedure explained in Sec.2.2. Ini-
tialize the gains g, ;¢ and the filter coefficients c; ;
with absolute values of Gaussian noise.

2. Update the filter coefficients c; ; using (9).
3. Update the gains g, ; ; using (10)

4. Repeat steps 2-3 until the changes in parameters are
sufficiently small.

In our experiments we observed that the divergence (8) is
non-increasing under each update. If streaming is used,
initial gy, ; ; are multiplied with small factor 0.001 for n
that do not belong to stream 7. Using a small non-zero
value favours the streamed excitations to be associated with
the filter ¢, but this does not exclude the possibility of that
the NMF algorithm will “correct” the streaming when the
gains are updated during the algorithm. The streaming
based on FO values or MFCC values is far from perfect
but yet improves the robustness of the parameter estima-
tion with the NMF algorithm.

2.5 Reconstruction of instrument-wise spectrograms

Spectrograms corresponding to a certain instrument ¢ can
be reconstructed by using (4) and limiting the sum over i
to one value only:

N J
T4 (k) = Z Initen,t(K) Z cija;(k) (1)
n=1 =1

Spectrogram of instrument ¢ is reconstructed as

Yyir(k) = zy (k) (12)
where the denominator is calculated using (4) and sum-
ming over all i.

Time-domain signals are generated by using phases of
the mixture signal and inverse discrete Fourier transform.

2.6 Classification

Mel-frequency cepstral coefficients (MFCC) are used to
represent the coarse shape of the power spectrum of the
separated instrument-wise signals. MFCCs are calculated
from the outputs of a 40-channel filterbank which occupies
the band from 30Hz to half the sampling rate. In addition
to the static coefficients, their first time derivatives approx-
imated with a three-point first-order polynomial fit are used
to describe the dynamic properties of the cepstrum.
Gaussian mixture models are used to model instrument-
conditional densities of the features. The parameters for
the GMM are estimated with Expectation Maximization
(EM) algorithm from the training material. Amount of
Gaussian distributions in the mixture model was fixed to 32
for each class. In order to prevent acoustic mismatch be-
tween the training material and the testing material, models
are trained with the separated signals. In the training stage,
the perfect streaming is used with a prior knowledge about



the sources in the signals. In the classification stage, like-
lihoods of the features are accumulated over the signal for
the instrument classes, energy weighting the likelihoods
with the RMS energy in the corresponding
frame, and the classification is performed with maximum-
likelihood classifier.

3. EXPERIMENTS

The proposed algorithm is evaluated in the musical instru-
ment recognition task with generated polyphonic signals.
The streaming algorithm is evaluated using both the pitch
and the timbre information. “no separation” denotes a sys-
tem where instrument recognition is done without sepa-
ration directly from the mixture signal. “no streaming”
denotes a system where the NMF is initialized (step 1 in
Section 2.4) with random values g, ; ;. “streaming (given
FOs)”” denotes system where time-varying pitches of sources
were given in advance. ‘“streaming (est. FOs)” denotes
system where the pitches were estimated with the multi-
pitch estimator and used in automatic streaming. “stream-
ing (timbre)” uses timbre information in streaming and the
FOs used for estimating the timbre were given in advance.
Prior information of polyphony is used in all systems.

3.1 Acoustic Data

Polyphonic signals are generated by linearly mixing sam-
ples of isolated notes from the RWC musical instrument
sound database. Nineteen instrument classes are selected
for the evaluations (accordion, bassoon, clarinet, contra-
bass, electric bass, electric guitar, electric piano, flute, gui-
tar, harmonica, horn, oboe, piano piccolo, recorder, sax-
ophone, trombone, trumpet, tuba) and the instrument in-
stances are randomized either into training (70%) or testing
(30%) set. The polyphonic signals are generated from these
sets, 500 cases for the training and 100 cases for the test-
ing.

Four-second polyphonic signals are generated by ran-
domly selecting instrument instances and generating ran-
dom note sequences for them. For each instrument, the
first note in a note sequence is taken randomly from the
uniform distribution specified by the available notes in the
RWC database for the instrument instance. The next notes
in the sequence are taken from a normal distribution having
a previous note as the mean and the standard deviation o
(being 6 semitones if not mentioned otherwise). Unisonal
notes are excluded from the note sequence. The notes are
randomly truncated to have length between 100 ms and one
second. Signals from each instrument are mixed with equal
mean-square levels. Examples of test signals are available
atwww.cs.tut.fi/~heittolt/ismir09/.

3.2 Evaluation Results

The separation quality was measured by comparing the
separated signals with the reference ones. The signal-to-
noise ratio (SNR) of a separated signal is estimated as

Polyphony
o . 49 26 21 15 1.2
streaming
streaming
(est. FOs) 72 40 25 17 12
st.reamlng 16 44 33 24 19
(timbre)

Table 1. Average signal-to-noise rations (in dB) for differ-
ent system configurations.

Polyphony

1 2 3 4 5 6
ho 62.0 187 121 137 244 295
separatlon
no— 62.0 495 421 426 393 427
streaming
streaming | 6> 590 580 57.9 57.8 56.0
(given FOs)
streaming
st FOu, | 610 602 535 567 552 538
streaming | 6,0 576 519 57.0 559 59.1
(timbre)

Table 2. F-measures (%) for different system configura-
tions.

2
SNR = 1010g,0 Zis(t) (13)
t

(st — 5"
where s(t) is the reference signal and §(t)is the separated
signal. The average signal-to-noise ratios obtained for dif-
ferent system configurations are given in Table 1.

In instrument recognition, balanced F-measure is used
as metric in the evaluations. The recall R is calculated as
the ratio of correctly recognized instrument labels to sum
of the correctly recognized instrument labels and unrecog-
nized instrument labels. The precision P is calculated as
the ratio of correctly recognized instrument labels to all in-
strument labels produced by the system. The F-measure is
calculated from these two values as F' = 2RP/(R + P).

The evaluation results for different system configura-
tions are given in Table 2. The system without separation
uses the prior knowledge about the polyphony of the sig-
nal to find same amount of instruments directly from the
mixture signal. This increases the random guess rate as
the polyphony increases. The proposed approach using
separation as a pre-processing gives rather steady perfor-
mance regardless of the polyphony and gives reasonable
performance already without the streaming algorithm. The
streaming algorithm improves the results evenly, giving
10-15% increase in performance. The pitch and the timbre
information based streaming gives same level of accuracy,
though the pitch information seems to give slightly more
robust performance. The estimated fundamental frequen-
cies work almost as well as the given frequencies. The
evaluation results for different types of polyphonic signals



Polyphony
o 1 2 3 4 5 6

3 |51.0 599 535 573 57.6 54.6
6 | 620 576 519 57.0 559 59.1
12 | 720 63.1 537 575 554 578

Table 3. F-measures (%) for different polyphonic signal
conditions with the timbre based streaming.

are given in Table 3. The proposed system gives quite con-
sistent results with all levels of the polyphony and when
varying the standard deviation o from 3 to 12 semitones.
The slight variations in some cases are due to the random-
ization of used instruments for different polyphony levels.

4. CONCLUSIONS

In this paper, we proposed a source-filter model for sound
separation and used it as a preprocessing step for musical
instrument recognition in polyphonic music. The experi-
mental results with the generated polyphonic signals were
promising. The method gives good results when classify-
ing into 19 instrument classes and with the high polyphony
signals, implying a robust separation even with more com-
plex signals. When recognizing the instrument from a se-
quence of several notes, it seems that the remaining slight
separation artefacts average out to quite neutral noise,
whereas the information related to the target instrument is
consistent and leads to a robust recognition. Even when the
FOs are estimated automatically, they provide sufficiently
accurate information to get reasonable results. !
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