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ABSTRACT

This paper proposes an interpolating extension to hidden Markov

models (HMMs), which allows more accurate modeling of natural

sounds sources. The model is able to produce observations from dis-

tributions which are interpolated between discrete HMM states. The

model uses Gaussian mixture state emission densities, and the inter-

polation is implemented by introducing interpolating states in which

the mixture weights, means, and variances are interpolated from the

discrete HMM state densities. We propose an algorithm extended

from the Baum-Welch algorithm for estimating the parameters of

the interpolating model. The model was evaluated in automatic in-

strument classification task, where it produced systematically better

recognition accuracy than a baseline HMM recognition algorithm.

Index Terms— Hidden Markov models, acoustic signal pro-

cessing, musical instruments, pattern classification

1. INTRODUCTION

State models are widely used in modeling, automatic recognition,

and synthesis of audio signals since they allow modeling non-

stationary sounds. Hidden Markov model (HMM) with continuous

state emission functions is the most commonly used model in au-

tomatic speech recognition, since it provides a good framework

for modeling the adverse acoustic characteristics of natural speech,

simultaneously with high-level language modeling. A major ad-

vantage of HMMs is also that the parameters can be efficiently

estimating using training data.

A drawback in HMMs is that each state produces observations

which are independent from each other, whereas natural sounds

sources have a strong correlation in time. This limitation is usually

circumvented by using delta and acceleration features which model

the temporal evolution of the signal. More advanced models, for ex-

ample trajectory models [1] or switching linear dynamical systems

[2] model the temporal evolution explicitly. An interpolating state

model where the observations were modeled by a piece-wise linear

function was found to be efficient in modeling musical sounds [3].

Section 2 in this paper proposes a interpolating state model

which implements the piece-wise linear model in a probabilistic

framework which is similar to HMMs. This allows modeling se-

quences where observations move gradually from a state to another

state. Figure 1 shows an example of interpolated state parameters

for a single Gaussian. With an equal number of model parameters,

the modeling error of the proposed model is significantly smaller.

Section 3 proposes an algorithm which trains the parameters of

the model while taking into account the interpolations. Section 4

presents the decoding algorithm and Section 5 presents simulations

where the model is shown to outperform existing acoustic models in

an automatic instrument recognition task.

This work has been supported by the Academy of Finland.

Fig. 1. A feature of an example signal as a function of time (dashed

lines) and the density means of the optimal state transition paths of

a hidden Markov model (solid line, left plot) and the proposed model

(solid line, right plot).

2. THE MODEL

The model is defined by a set of main states and a set of interpolating

states which parameters are interpolated from the main states. Let

us denote the number of main states by K so that each main state

is denoted by index i = 1, . . . , K . The main states alone form a

state machine identical to an HMM. The state transition probability

between main states i is j denoted by aij and the initial state distri-

bution by πi. The state emission probability density functions (pdfs)

bi are Gaussian mixture models (GMMs)

bi(ot) =

N
∑

n=1

wn
i N (ot; µ

n
i ,Σn

i ), (1)

where N is the number of Gaussians and wn
i , µ

n
i , Σn

i , are the

weight, mean vector, and diagonal covariance matrix of the nth mix-

ture of state i, respectively. ot is the observation vector in frame t.

The interpolating part of the model consists of interpolating

states which form fixed-length state transition paths from a main

state to another main state. Possible lengths are beforehand de-

termined by the set of allowed lengths D. For a specific length

d ∈ D and main state combination i 6= j, interpolating states

(i, j, d, τ), τ = 1, . . . , d−1 are generated. τ is a indicator variable

which determines the order of the interpolating state in the partic-

ular interpolating path. The set is chosen manually to balance the

performance and computational complexity of the algorithm.

The initial probabilities of interpolating states are defined to be

zero. The state transition probability from main state i to first inter-

polating state (i, j, d, 1) of each duration d equals aij . In practise,

this means that all interpolation lengths are modeled as equally prob-

able. From interpolating state (i, j, d, τ) which is not the last state

of interpolating state sequence (τ < d−1), we always move to the

interpolating state (i, j, d, τ+1) with probability 1. From the last in-

terpolating state (i, j, d, d−1) in an interpolating state sequence we

always move to main state j, thus terminating the interpolation state

transition path. Figure 2 illustrates the interpolating states between

two main states.

The emission probability of the interpolating state (i, j, d, τ) is

also a GMM, the parameters of which are obtained by linear inter-



polation of the parameters of the states i and j as

wn
(i,j,d,τ) = wn

i

τ

d
+ wn

j

d− τ

d
(2)

µ
n
(i,j,d,τ) = µ

n
i

τ

d
+ µ

n
j

d− τ

d
(3)

Σ
n
(i,j,d,τ) = Σ

n
i

τ

d
+ Σ

n
j

d− τ

d
. (4)

The above implements linear trajectories of pdfs from main state i
to main state j, having a length of d − 1 states. Interpolations are

not allowed from a main state to itself, so that the total number of

interpolating states equals Kint = K(K − 1)
∑

d∈D(d− 1).

3. ESTIMATING THE MODEL PARAMETERS

With the interpolating states the proposed model is still a HMM, but

it has a specific interpolating topology, and the parameters are shared

between the states in a specific way. Therefore, it is advantageous

to estimate the parameters while taking the topology into account.

Given an observation sequence O = o0,o1, . . . ,oT , we estimate

the parameters of the model by the generalized expectation maxi-

mization algorithm. Similarly to the Baum-Welch algorithm, we cal-

culate the state occupation probabilities and then estimate the model

parameters by maximizing and auxiliary function derived from the

state occupation probabilities.

The hidden variables in the training algorithm are qt, the

state at time t. We first use the forward-backward procedure

of Baum [4, pp. 335-337] to calculate the forward variables

αt(i) = p(o0,o1, . . . ,ot, qt = i|λ) and backward variables

βt(i) = p(ot+1, . . . , oT |qt = i, λ). Here λ denotes the current

parameters of the model. To simplify the notation, i can denote

either a main state or an interpolating state.

The state occupation variable γt(i) = p(qt = i|O, λ) is then

calculated for the main states and the interpolating states as

γt(i) =
αt(i)βt(i)

∑

i
αt(i)βt(i)

, (5)

where the summation is done over all the main states and interpolat-

ing states. We also introduce variable ξt(i, j) = p(qt = i, qt+1 =
j|O, λ)

ξt(i, j) =
αt(i)aijbj(ot+1)βt+1(j)

∑K

i=1

∑K

j=1 αt(i)aijbj(ot+1)βt+1(j)
. (6)

...

.
.
.
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Fig. 2. An illustration of two main states i and j, state transition path

between them, and interpolating states (i, j, d, τ) generated between

them. All the interpolation durations have an equal probability aij

In Eqs. (5) and (6), i and j can denote either a main state or an in-

terpolating state. It can be noticed that ξt(i, (i, j, d, τ)) is non-zero

only when τ = 1. The auxiliary function

Q(λ′, λ) =
∑

q

p(O,q|λ′) log p(O,q|λ) (7)

used in maximization of the likelihood of the model parameters is

identical to the one used in HMM training. λ′ denotes the current

parameters of the model, and the auxiliary function maximized with

respect to new parameters λ. q denotes a state transition path, and

the summation above is done over all possible state transition paths.

Even though the auxiliary function is identical to HMM training, the

parameter estimation is different since the parameters of the interpo-

lating states are dependent on the main state parameters.

Similarly to the Baum-Welch algorithm, the auxiliary func-

tion can be split into three terms accounting for the initial state

probabilities, the state transition probabilities, and state emission

probabilities. Because the initial probabilities of interpolating states

are zero and transitions from them are fixed, the factorization is

Q(λ′, λ) = Qπ(λ′, λ) +

K
∑

i=1

Qai
(λ′, λ) + Qb(λ

′, λ), (8)

where the terms Qπ , Qa, and Qb account for the the initial state

probabilities, the state transition probabilities, and state emission

probabilities, respectively, and are defined in the following sections.

3.1. Initial state probabilities and state transition probabilities

Since the initial state probabilities of the interpolating states are

zero, the auxiliary term corresponding to the initial state probabili-

ties is identical to the one in the Baum-Welch algorithm:

Qπ(λ′, λ) =

K
∑

i=1

γ0(i) log πi.

With constraint
∑K

i=1 πi = 1 the above is maximized with

πi = γ0(i). (9)

Since transitions from a main state are allowed to main states but as

well to first states of interpolation, the auxiliary term corresponding

to transitions from state i is given as

Qai
(λ′, λ) =

T
∑

t=1

K
∑

j=1

[ξt−1(i, j) +
∑

d∈D

ξt−1(i, (i, j, d, 1))] log aij .

With constraint
∑K

j=1 aij = 1 the above is maximized with

aij =

∑T

t=1[ξt−1(i, j) +
∑

d∈D ξt−1(i, (i, j, d, 1))]
∑T

t=1 γt−1(i)
. (10)

3.2. Mixture weights

Similarly to HMMs with Gaussian mixture densities, we can model

the densities by individual Gaussians by generating artificial states

with state transition probabilities from the original state to the gen-

erated states being equal to the mixture weights [5]. We calculate

the probability of being in state i at time t and the nth mixture

accounting for ot as

γn
t (i) = γt(i)

wn
i N (ot; µ

n
i ,Σn

i )
∑N

n′=1 wn′

i N (ot; µn′

i ,Σn′

i )
, (11)

where i can denote either a main state or an interpolating state. The

auxiliary function corresponding to the mixture weights is



Q(λ′, λ)w =

T
∑

t=1

K
∑

i=1

N
∑

n=1

[γn
t (i) log(wn

i )+

∑

j 6=i

∑

d∈D

d−1
∑

τ=1

γn
t (i, j, d, τ) log(wn

i

τ

d
+ wn

j

d− τ

d
)], (12)

where the interpolated weights (2) are explicitly written in the equa-

tion. To simplify the notation, let us write ζn(i) =
∑T

t=1 γn
t (i) and

ζn(i, j, d, τ) =
∑T

t=1 γn
t (i, j, d, τ). With constraint

∑

i wn
i = 1

the above is maximized with the solution

w′n
i =ζn(i) +

∑

j 6=i

∑

d∈D

d−1
∑

τ=1

[ζn(i, j, d, d−τ)
τ

d
+ ζn(i, j, d, τ)

d−τ

d
],

wn
i =

w′n
i

∑

n
w′n

i

. (13)

The solution can be verified with Lagrange multipliers, but it is here

omitted because of space limitation constraints.

3.3. Variances

The auxiliary function corresponding to the emission pdfs of the nth

mixture is

Q(λ′, λ)bn = −
1

2

K
∑

i=1

T
∑

t=1

[γn
t (i) log(bn

t (i))

+
∑

j 6=i

∑

d∈D

d−1
∑

τ=1

γn
t (i, j, d, τ) log(bn

t (i, j, d, τ))], (14)

where bn
t (i) = N (ot; µ

n
i ,Σn

i ) is the Gaussian distribution of the

nth mixture. Since we use diagonal covariance matrices, the means

and variances of each feature can be updated independently. To sim-

plify the notation, the equations in Sections 3.3 and 3.4 present the

updates of an individual feature, but the feature index is omitted.

Thus, let us denote an observed feature in frame t by ot, the mean of

a feature of state i and mixture n by µn
i and its variance by σ2

i,n.

When the terms independent of the variances and means in Eq.

(14) are denoted by L, we obtain

Q(λ′, λ) = L−
1

2

T
∑

t=1

N
∑

n=1

{

γn
t (i)[log(σ2

i,n) +
(ot − µn

i )2

σ2
i,n

]

+
∑

j 6=i

∑

d∈D

d−1
∑

τ=1

γn
t (i, j, d, τ)[log(σ2

(i,j,d,τ),n)+
(ot − µn

(i,j,d,τ))
2

σ2
(i,j,d,τ),n

]
}

.

(15)
Since the variances of the interpolating states are weighted sums of

main state variances, we do not have a method for direct maximiza-

tion of the above with respect to the variances, but instead use an

update which just increases the auxiliary function.

Each term in the above sum equals the Bregman divergence [6]

with φ(x) = − log(x), or the Itakura Saito distance between the

terms (ot−µn
i )2 and the corresponding variance σ2

i,n, up to additive

terms independent of the variances, weighted by the state occupation

probability. For the maximization of the divergences there exists a

multiplicative gradient descent update [7, 6], which has been found

to decrease the divergence. The resulting update is

σ2
i,n←σ2

i,n

ρn
i +

∑

d∈D

∑d−1
τ=1[

τ
d
ρn
(i,d,τ) + d−τ

d
ρn
(i,d,d−τ)]

ζn
i σ−2

i,n +
∑

d∈D

∑d−1
τ=1[

τ
d
νn
(i,d,τ) + d−τ

d
νn
(i,d,d−τ)]

,

(16)

where

ρn
i =

T
∑

t=1

γn
i (ot − µn

i )2σ−4
i,n,

ρn
(i,d,τ) =

∑

j 6=i

T
∑

t=1

γn
(i,j,d,τ)(ot − µn

(i,j,d,τ))
2σ−4

(i,j,d,τ),n,

νn
(i,d,τ) =

∑

j 6=i

ζn(i, j, d, τ)σ−2
(i,j,d,τ),n.

3.4. Means

When the weighted means in Eq. (3) are substituted to (15) and

terms independent on the state mean vectors are omitted, we obtain

auxiliary function corresponding to the means of the nth mixture as

Q(λ′, λ)µn = −
1

2

T
∑

t=1

K
∑

i=1

[
γn

t (i)

σ2
i,n

(ot − µn
i )2

+
∑

j 6=i

∑

d∈D

d−1
∑

τ=1

γn
t (i, j, d, τ)

σ2
(i,j,d,τ),n

(ot −
τ

d
µn

i −
d− τ

d
µn

i )2].

For each feature and mixture combination, the above can be

viewed as a weighted linear least-squares problem with KT (1 +
(1 −K)

∑

d∈D(d − 1)) equations and K unknown variables. The

global minimum can be solved by setting the derivative with respect

to the means to zero which leads to the normal equations, but it

is impractical to write the coefficients and weights explicitly using

matrices. However, the resulting solution can be summarized as

follows. For each mixture n, let us write the weighted coefficient

matrix multiplied by its transpose by K x K matrix H where the

diagonal entries are defined as

H
n
i,i =

ζn(i)

σ2
i,n

+
∑

j 6=i

∑

d∈D

d−1
∑

τ=1

[ (d−τ)2ζn(i,j,d,τ)

d2σ2
(i,j,d,τ),n

+
τ2ζn(i,j,d,d−τ)

d2σ2
(i,j,d,d−τ),n

]

and the non-diagonal entries as

H
n
i,j =

∑

j 6=i

∑

d∈D

d−1
∑

τ=1

τ(d− τ)ζn(i, j, d, τ)

d2σ2
(i,j,d,τ),n

Furthermore, let us write the weighted coefficient matrix multiplied

by the observation vector as a vector gn having entries

g
n
i =

T
∑

t=1

ot

[γt(i)

σ2
i,n

+
∑

j 6=i

∑

d∈D

d−1
∑

τ=1

(d−τ)γt(i,j,d,τ)+τγt(i,j,d,d−τ)

dσ2
(i,j,d,τ),n

]

.

The optimal mean vector can be solved as

µ
n = (Hn)−1

g
n, (17)

where the ith entry of µ
n is the mean of ith state and nth mixture.

3.5. Implementation issues

Like HMMs, the algorithm is sensitive to the initial parameters. We

used to following initial parameters. All the state transition proba-

bilities are 1/(K|D|), where |D| is the number of possible interpo-

lation lengths. All the initial state probabilities are set to 1/K. The

means and variances are obtained by k-means clustering the obser-

vation vectors.

In each iteration, the occupation probabilities are calculated ac-

cording to Eqs. (5), (6), and (11). While keeping them fixed, the

parameters are updated according to Eqs. (9), (10), (13), (16), and

(17). Even though simultaneous update of means and variance is



not guaranteed to increase the joint auxiliary function, in practise

it was found to produce good results. It is advantageous to restrict

the variances above a minimum threshold after each iteration. In

our implementation we first train the model using a single Gaussian

and then use mixture splitting to train GMMs. It can be noticed that

when interpolation is not allowed (D = ∅), the model reduces to a

basic HMM and the training algorithm to the Baum-Welch algorithm

for continuous mixture densities. The computational complexity of

the training algorithm is approximately Z = K
∑

d∈D(d−1) times

higher than training a HMM with an equal number states using the

Baum-Welch algorithm, because the probabilities has to be accumu-

lated over Z times higher number of states.

When multiple observation sequences are used to train the

model, the reestimation formulas are first modified by normalizing

the forward and backward coefficients as presented in [4, pp. 369-

370]. The dividends and divisors in Equations (9), (10), (13), and

(16) are calculated for each sequence, and the update is the quotient

of the summed terms. In the case of means, the matrix Hn and

vector gn in (17) is calculated for each observation sequence and

then summed, after which the sum Hn is inverted and multiplied by

the sum gn to obtain the means.

4. DECODING

Once the models have been trained, the model can be viewed as a

normal HMM, so that the most likely state transition path and its

likelihood can be calculated using the Viterbi algorithm. The state

emission probabilities has to be calculated for the K main states and

the Kint interpolating states. Per each observation, there are in total

K2 transitions from main states to main states, and K(K − 1)|D|
transitions from main states to interpolating states. The total number

of transitions from interpolating states equals Kint. The computa-

tional complexity of the Viterbi decoding of the proposed model is

approximately Kint times higher than basic HMM Viterbi decoding.

5. APPLICATION TO AUTOMATIC INSTRUMENT

RECOGNITION

The proposed method was validated in automatic instrument recog-

nition task, in which HMMs have been found to produce good re-

sults [8]. The acoustic data was isolated musical instrument note

samples selected from the McGill University Master Samples col-

lection, University of Iowa sample collection, IRCAM’s Studio On-

line, and Real World Computing database. Eight instrument classes

were selected to be used in the evaluations (piano, electric piano,

acoustic guitar, electric guitar, electric bass, saxophone, oboe, flute).

The instrument instances were randomized evenly into training and

testing. From these instrument instances, twelve scales played with

varying dynamics and style were randomly selected for both sets.

In order to keep the training time reasonable, the training set was

reduced by selecting only every fifth note from the scales. A to-

tal of 1108 individual note samples were used in training and 5278

in testing. Mel-frequency cepstral coefficients and their first time

derivatives were used as features. Features were projected linearly

to a base with maximal statistical independence using independent

component analysis.

In addition to the proposed system, we used a baseline HMM

classifier in the evaluation. A model was trained for each instru-

ment class and in the classification stage, the Viterbi algorithm was

applied to find the most likely state sequence and instrument class.

The baseline HMM system and the proposed IHMM system

both utilized a fully connected topology between the main states.

K = 3 K = 4 K = 6 K = 12 K = 16
method N = 4 N = 3 N = 2 N = 1 N = 1

HMM 73.2% 75.4% 76.8% 78.3% 74.4%

IHMM 79.1% 80.1% 78.5% 79.1% 79.3%

Table 1. Recognition accuracy of the evaluated methods as a func-

tion of the number of states K and the number of mixtures N .

The training algorithm was initialized identically in both systems

and the maximum number of iterations in the Baum-Welch training

algorithm was limited to ten. The IHMM system was tested with

a duration length set D = {5, 10, 15} which was found to produce

good results in initial experiments.

The recognition accuracies as a function of the number of states

and Gaussians are given in Table 1. The IHMM gives systematically

better results than the HMM. Increasing the number of states up to

12 states improves the performance of the HMM recognizer, but a

larger number states decreases its accuracy. The IHMM algorithm

is able to produce a good performance with a significantly smaller

number of states. Analysis of effects of the duration length set and

other parameters of the algorithm are topics for a future research.

6. CONCLUSIONS

We have proposed and interpolating extension to HMMs, which

overcomes the limitation of HMM state independence by interpo-

lating the emission pdfs linearly between states. We have presented

an algorithm for training the parameters of the proposed model.

In automatic instrument recognition study the proposed method is

shown to outperform the baseline HMM classifier.
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