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ABSTRACT Audio
This paper presents a method for audio context recognition,

Context database

meaning classification between everyday environments. The [ event

method is based on representing each audio context using a| detection ¥ Events
histogram of audio events which are detected using a super- Feature extraction

vised classifier. In the training stage, each context is reatde

with a histogram estimated from annotated training data. In *

the testing stage, individual sound events are detectdtein t HMM Context modeling
unknown recording and a histogram of the sound event oc-

currences is built. Context recognition is performed by eom
puting the cosine distance between this histogram and event fvents J Context models
histograms of each context from the training database. Term —p| Context recognition
frequency—inverse document frequency weighting is stiidie
for controlling the importance of different events in the-hi
togram distance calculation. An average classificatiom-acc Figure 1: System overview.
racy of 89% is obtained in the recognition between ten every-

day contexts. Combining the event based context recognitiosound events. Contexts are modeled with event histograms

system with more conventional audio based recognition incClléctéd from annotated recordings. The proposed system
creases the recognition rate to 92% is divided into two stages, sound event detection and contex

' recognition. A sound event detection system is used to de-
tect sound events present in the tested context and the event

1. INTRODUCTION histogram constructed from the recognition result is madch

Context recognition is defined as the process of automptical With context models. The system is evaluated with ten con-
determining the context around a device. Information aboutexts that may contain the same events. The overall system
the surroundings would enable wearable devices to providécheme is presented in Figure 1.

better service to users’ needs, e.g., by adjusting the mbde o  The rest of this paper is organized as follows. Section 2
operation accordingly. Compared to image or video sensindriefs the related work. Section 3 presents the event detec-
audio has certain distinctive characteristics. Audio uegt  tion system, and Section 4 describes how detected events are
information from all directions and is relatively robustsen- ~ used in the context recognition. Section 5 explains the con-
sor position and orientation, which allows sensing withouttext database used in the evaluation and the evaluatidh itse
troubling the user. Audio can provide a rich set of informa-Section 6 provides conclusions and suggestions for further
tion which can relate to location, activity, people, or wisat study.

being spoken. The acoustic ambiance and background noise

characterizes a physical location, such as inside a céaues 2 RELATED WORK

rant, or office.

Early listening tests conducted in [1] showed that humangutomatic recognition of the context or environment based
are able to recognize everyday auditory contexts in 70% ofn audio information is known from many earlier works.
cases on average and confusions are mostly between contektewever, most of the work on context recognition has been
that have same types of prominent sound events. The studipne by directly recognizing the context from the acoustic i
suggested that distinct sound events recognized from the afprmation, without explicitly detecting the individual sod
ditory scene are a salient cue for human perception of audievents in the auditory scene. Eronenal. [2] presented
context. However, most of the proposed context recognitionan approach to recognize 24 everyday context with mel-
systems are modeling global acoustic characteristics ef thfrequency cepstral coefficients (MFCC) and hidden Markov
audio context rather than sound events [2, 3, 4]. models (HMM). They reached a 58% recognition accuracy

In this paper, we propose a context recognition systen@gainst 69% obtained in a human listening tests using the
based on detection of individual acoustic events. Our apsame material. The study in [3] presented an HMM-based
proach assumes that different contexts, such as a street @pvironmental noise classification system and reported ove
a restaurant, are characterized by the occurrence of serta1% accuracy in classifying 10 contexts using three second
test segments. The authors also performed a listening test
1This work was financially supported by the Academy of Finland on the same data. The listeners’ performance for the three




seconds segments was significantly worse than the systenfiall the classes present in that segment. This means includ
performance. More recently, Chatial. [4] proposed an ap- ing the same observation vectors to train multiple event-mod
proach using matching pursuit to select a small set of timeels. In the detection stage, features are extracted fontiree
frequency features to represent each context. They achievaudio clip, and the event detection is organized in two ways.
a 84% performance for 14 contexts for four second segmentvent detection over the entire recording is done using the
using these features jointly with MFCC. The used contextd/iterbi algorithm to obtain the most likely event sequence.
were chosen to be as different as possible to minimize oveHowever, the order of the sound events will not be used in
lapping. the context recognition. In addition to this, we use isalate
One of the approaches to use sound events in the cogvent recognition over four second segments by finding the
text recognition was presented in [5]. The authors propose @vent HMM that has most likely produced the observation
framework for detection of key audio effects in a continuoussequence of each segment. In this case, the system is used
stream. The optimal key effect sequence is determined usirig recognize the most prominent event in each segmant.
Viterbi decoding, controlled by a two-loop network defin- more detailed explanation of the event detection system can
ing possible transitions between sound effects. They use e found in [10].
audio effects, distinct enough to be perceived, with models
trained using isolated audio effects from Web. The différen
audio effects are modeled using HMMs with 5 to 11 states 4. CONTEXT RECOGNITION

per model, trained with various features. The authors tre . .
overlapping events by using the label of the dominant one fof /& @ssume that each context is characterized by the presence
f certain sound events. The event histogram for a record-

that region. The detected audio effects are used to recegni?' . X
the scene as one of 5 possible (non-overlapping) categoriedd iS constructed by collecting all the sound events into an
humor, pursuit, etc. More recently, the authors proposed afveNt occurrence histogram.  In order to prevent a bias to-
unsupervised co-clustering approach for the same task [?E/ards longer recordings, the event counts in the histogram

Authors of [7] propose an audio keywords generation systerfi'® divided by the number of events present in the reco_rding.
for sports videos. Low-level features are extracted from au | & models for the contexts are constructed by summing up

dio and after off-line feature selection hierarchical Sva/ i (hese event histograms. The context model histogram is nor-
used find audio keywords. Hidden Markov models are usef@lized so that the bins sum up to one.
to detect the semantic events in sports videos. The system In the recognition stage, an event histogram is collected
was tested with soccer, basketball, and tennis videos. from the events that are detected in the tested recordirg. Hi
Sound event detection from audio Signa|s can bhe pertograms ar.e calculated either from the Output of the V|terb|
formed in an unsupervised or supervised manner. In the uri€gmentation or by accumulating the events recognized in
supervised approach, the categories of sound events are riBe four second segments. The context recognition is based
specified beforehand but distinct portions of the audioaiign On comparing this histogram with the context histogram.
are detected as potential events, e.g. via clusteringri@hé The event histograms are compared by calculating a dis-
supervised approach, predefined sound event classes dre utance between them. In the preliminary studies, we tested
to segment and classify sound events. In [9], we presentedthree distance metrics for the task: the cosine distanee, th
sound event detection system for the meeting room envirorcorrelation distance and one based on the Kullback-Leiber
ment using MFCC based features and a HMM classifier. ~ divergence. Since they provided rather similar perfornganc
in the final system we chose to usely one of them, the co-
3. EVENT DETECTION sine distance. The cosine distance is defined as the cosine of
the angle between an event histogram for con@xind an
The sound event detection in the proposed context recognevent histogram for tested recordiQy
tion system is based on continuous density HMMs and the
audio signal power spectrum is represented with MFCCs.

These short-term features represent the coarse shape of the Disteos(Q, C) = S 10iC 1)
spectrum and provide a good discriminative performance St [T 25T .2
with reasonable noise robustness. The system uses 16 2i-1% 2i-16

MFCCs calculated from the outputs of a 40-channel filter-
bank. In addition to the static coefficients, their first ard-s whereq; is the normalized event count of evein the tested
ond order time differentials are used to describe the dynamirecording,c; is the normalized event count of evarit the
properties of the cepstrum. Features are extracted in 20 neontext andT is number of events in the vector. The con-
frames with a 50% frame shift. text corresponding to the closest distance is selectedeas th
We train 61 HMMs to represent 61 sound event catefecognition result.
gories. Three-state left-to-right HMMs are trained witle th In order to better model the within context variation in
standard Baum-Welch training procedure using a traininghe distribution of eventsk-nearest neighbok{NN) classi-
database that will be described in Section 5.1. The probéfication is also used. Witk-NN, all the recordings in the
bility density of each state is modeled using Gaussian mixtraining database can be used to represent the context they
ture models (GMM) having 16 components. The sound evertielong to. In this case each context is represented by sev-
HMMs are connected into a single HMM with equal transi-eral event histograms, each calculated from a single record
tion probabilities between the event models. ing in the training database. Distances to each recordiag ar
Manually annotated recordings with overlapping eventgalculated and the context recognition is done by majority
were used for training the event models. An audio segmentoting among classes corresponding to threearest context
where multiple events overlap is included in the trainintada instances.



4.1 Weighted event histograms
A weighing scheme for the events can be developed in a

Table 1: Event statistics from the database.

similar manner to the term frequency—-inverse document fre- Numberof  Total Average
quency (TF-IDF) used for document indexing [11, 12]. In Context present  number of  events per
our case, the indexing term is the sound event and the doc- event events 1 min.
ument is a recording from a specific context or the entire classes
context depending on the evaluation setup. The main idea basketball 14 990 11.3
of TF-IDF is that a term is an important indexing term for P€ach 16 738 3.7
document if it occurs frequently in it. This is denoted as bus 14 1729 12.0
term frequency (TF). On the other hand, terms which occur &' 12 82 5.3
in many documents are rated less important for indexing due na/way 9 822 74
to their widely common nature. This is denoted as inverse ?(:gst:aeurant 1:2% 1728200 172'83
document frequency (IDF) and it is defined as follows: shop 14 1797 20.4
ID| street 15 827 7.6

IDF (term) = log (m) ) track & field 11 793 6.9
where|D| is the total number of recordings abiF (term) is  Taple 2: Context-wise average recognition performances.
the number of documents in which the term occurs at least ]
once. The inverse document frequency of a term is low if it ‘ 4 sec. Viterbi
occurs in many documents and is highest if the term occurs _ segments segmentation
in only one. The weighty; of a termi in documentd is Cosine ‘ 88.5 ‘ 84.5
calculated as TF-IDF 61.1 59.3

W = TF(term;, d) o |DF (term) 3) stereophonic recording was included in the databhsthis

paper, we are using monophonic versions of the recordings,

whereTF (term;, d) is the term frequency, i.e., the number of i.e., two channels are averaged to one channel.

timesterm; occurs in the documeick The recordings were manually annotated indicating the
In the training stage, IDF is collected from the training start and end times of all clearly audible sound events in the

data and event histograms (TF) for contexts are weighted. lauditory scene. The repetitive sound events are usually-ann

the testing stage, event histogram (TF) is collected froen thtated as long events, e.g. ball hitting the floor in the basket

test data and IDF calculated from the training data is used ipall game, while long events like conversation are anndtate

the weighting of the event histogram. as multiple successive speech events if there is perceivabl
pause in the conversation. Annotated sound events present i
5. EVALUATION the recordings were grouped into 61 event classes. The event

ﬁlasses include e.g. speech, laughter, applause, car door,

an audio database collected from real-life environmerite T ro?ﬁéi?nlssrzslse,n?g?rrbfnhglrfomluglg\’/:r?td(:flzcs)gsetzipsh dEﬁqc;nmg\tgn t
database is used to train the event detection system and t@% y

context recognition system. Two different methods for ob- asses appear in multiple contexts. There are also event

- - asses which are context specific. Event statistics fragn th
talnmg_t_he events are evalyated. In the f|rst r_nethod, everr%cording database are presl?anted in Table 1. Figure 2 shows
recognition is done by splitting each recording into four-se T hist lected f the datab
ond segments and classifying each segment as corresporm(—a event histograms collected from the database. .
ing to the most likely event. The events detected in the seg- | "€ database was organized in a five-fold manner into
ments within the tested recording are collected to form af@ining and testing sets, to test all the available recuysli

event histogram. The second method uses the Viterbi alg ‘he audio of the training set is used to train the event detec-
rithm to obtain the most likely event sequence for the entird!O" System ang thlsttogrztirr]ns of ?nr:otated _et\_/ent C""ESS occur-
recording and this sequence will be used to construct the hi§ENCes are used (o train the context recognition system.
togram. In addition to this, two different methods for maedel N

ing each context are evaluated. The first method is to chara®-2 Event based recognition

terize each context by one histogram constructed from all thThe resuits for event based context recognition are pregent
events. In the second method each recording belonging t0jg Taple 2. “Cosine” denotes a system were the distance be-
context is used as an example of that contextlahtN clas-  tyeen the estimated event histograms and the context his-
sification is used. We also study the effect of the test segmefpgrams is calculated with the cosine distance. “TF-IDF”
length on the recognition accuracy in detail. denotes a system were the event histograms are TF-IDF
weighted before calculating the cosine distance. Two meth-
5.1 Database ods of collecting events are used in this evaluation. The
The material for the database was gathered by recording Idethod where event recognition is done with four second
to 30 minute long recordings in ten real-life environments o segments is denoted as “4 sec. segments” and the method
contexts. The selected audio contexts were basketball,gamésing Viterbi decoding is denoted as “Viterbi segmentétion
beach, inside a bus, inside a car, hallway, office, restauranin the table.
grocery shop, street and stadium with track and field events. The full confusion matrix for the system ’'Cosine’ is
For each context, 8 to 14 recordings were made with binaushown in Table 3Some of the confusions are understandable
ral microphones placed inside the human ears. In total, 10&hen looking at the sound events present in the contexts. For

The proposed context recognition system is evaluated wit



L= e

o e e B Table 4: Multiple context instances and kNN based recogni-

0-5\\H\\\\\\\\\H\\\\\\\\\H\\\\\\\\\H\\\\\\\\\H\\\\\\\\\H\\ tlon.
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obesimiimiiii Bl e TF-IDF | 89.3 856 846 855 86.6
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H

Fommen Hle e e s Contexcuise average recognon perormances.
£ N T T T 4 sec. Viterbi
~o§ segments segmentation

g | . i Baseline 88.5
e Cosine + Baseline 914 924

5 TF-IDF+ Baseline| 90.5 90.4
e R % Sians) and using MFCCs (static, first and second order time
g I derivatives). The test recordings for this system are diat in
L0 T four second segments which are then classified individually
g O[T T T This system is later referred as the baseline system.

E 0LL¢_.I¢-_ Since the baseline system models global acoustic charac-

teristics of the audio context instead of sound events, it ma
provide complementary information compared to the pro-
5 g posed event based system. Combining these two may thus
Figure 2: Normalized event histograms for contexts.  lead to improved performance. To combine these two sys-
tems, the distance between the test event histogram and the
context histograms are mapped into probabilities usingnan i
Table 3: Confusion matrix for context recognition using verted sigmoid-function. The mapped probabilities arethe
event histograms. Rows in the matrix correspond to premMultiplied with the context likelihood produced by the base
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sented context and columns to the recognition result. line system. _
The evaluation results are presented in Table 5. “Base-

1 2 3 4 5 6 7 8 9 10 line” denotes the system based on acoustic information of
basketball 1 | 100 contexts and “Cosine+Baseline” denotes the system where
beach 2 64 36 the output of the baseline system is combined with the event
bus 3 9 91 based context recognition system without TF-IDF weighting
car 4 100 “Baseline+TF-IDF” denotes a system were the weighting of
hallway 5 60 20 10 10 the event histograms is usetihe proposed context recogni-
office 6 10 £ tion system provides comparable recognition accuracy with
restaurant 7 10 £y the baseline system (see Tables 2 and 4). The recognition
shop 8 100 accuracy is slightly improved when the proposed system is
street 9 10 90 combined with the baseline system.
track & field 10 100 The full confusion matrix for the baseline system is

hown in Table 6. The full confusion matrix for the system

example, in the hallway there are footsteps and Ventilatio6\/here the output of the baseline system is combined with
noise present while footsteps are also present in the streﬁ{

context and similar ventilation noise in the office context. e proposed event based system without TF-IDF weighting

- . . ; (see Table 3) is presented in TableBs. comparing the con-
Recognition results using-NN approach with varying  ¢,qjons in Tables 6 and 7, one can see that the event based
values fork are presented in Table 4n this case, TD-IDF

S o A m incr h rforman n th nd hallw.
weighting helps the context recognition and provides aebett syste creased the performance on the bus and hallway

: th h . iqhted hist Sj contexts. Confusions of the bus context are now made with
performance than when using unweighted histograms. SINGRe street context which is understandable since they share
the idea of TF-IDF is to weigh rare events more than th

. &ome sound events.
common ones, collecting all the events from the database to

form only one context model for each context will averages 4 Tegt segment length

out the rare events within each context and the recognition ) o
will only become more difficult. The effect of different test segment lengths on the recamgnit

accuracy was evaluated. Evaluation was done by construct-
ing the event histogram from the classification results 6f di
ferent number of four second segments. Using the baseline
In addition to the event based context recognition, a syssystem, the likelihoods of successive four second segments
tem based on acoustic information of contexts was evaluatedre accumulated over time. The recognition results based on
More specifically, we constructed a baseline system wherthe test segment length are shown in Figure 3 for the baseline
each of the ten contexts is modeled with a GMM (16 Gaussystem and the system usikdNN approach.

5.3 Combining event and direct acoustic information



Table 6: Confusion matrix for context recognition using the

baseline system.

1 2 3 4 5 6 7 8 9 10
basketball 1| 100
beach 2 73 9 18
bus 3 73 9 18
car 4 100
hallway 5 50 30 20
office 6 10 90
restaurant 7 100
shop 8 100
street 9 100

track & field 10 100

Table 7: Confusion matrix for context recognition using the

“Cosine+Baseline” system with Viterbi segmentation.
1 2 3 4 5 6 7 8 9 10

basketball 1| 100

beach 2 73 9 18

bus 3 91 9

car 4 100

hallway 5 80 20

office 6 10 90

restaurant 7 100

shop 8 100

street 9 10 90

track & field 10 100

5.5 Discussion

TF-IDF weighting was found to help recognition only when
using multiple examples of one context, represented by the
recordings in the training database. This is due to the fact
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Figure 3: Context recognition accuracy as function of test
segment length.
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