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ABSTRACT

This paper presents a method for audio context recognition,
meaning classification between everyday environments. The
method is based on representing each audio context using a
histogram of audio events which are detected using a super-
vised classifier. In the training stage, each context is modeled
with a histogram estimated from annotated training data. In
the testing stage, individual sound events are detected in the
unknown recording and a histogram of the sound event oc-
currences is built. Context recognition is performed by com-
puting the cosine distance between this histogram and event
histograms of each context from the training database. Term
frequency–inverse document frequency weighting is studied
for controlling the importance of different events in the his-
togram distance calculation. An average classification accu-
racy of 89% is obtained in the recognition between ten every-
day contexts. Combining the event based context recognition
system with more conventional audio based recognition in-
creases the recognition rate to 92%.

1. INTRODUCTION

Context recognition is defined as the process of automatically
determining the context around a device. Information about
the surroundings would enable wearable devices to provide
better service to users’ needs, e.g., by adjusting the mode of
operation accordingly. Compared to image or video sensing,
audio has certain distinctive characteristics. Audio captures
information from all directions and is relatively robust tosen-
sor position and orientation, which allows sensing without
troubling the user. Audio can provide a rich set of informa-
tion which can relate to location, activity, people, or whatis
being spoken. The acoustic ambiance and background noise
characterizes a physical location, such as inside a car, restau-
rant, or office.

Early listening tests conducted in [1] showed that humans
are able to recognize everyday auditory contexts in 70% of
cases on average and confusions are mostly between contexts
that have same types of prominent sound events. The study
suggested that distinct sound events recognized from the au-
ditory scene are a salient cue for human perception of audio
context.However, most of the proposed context recognition
systems are modeling global acoustic characteristics of the
audio context rather than sound events [2, 3, 4].

In this paper, we propose a context recognition system
based on detection of individual acoustic events. Our ap-
proach assumes that different contexts, such as a street or
a restaurant, are characterized by the occurrence of certain
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Figure 1: System overview.

sound events. Contexts are modeled with event histograms
collected from annotated recordings. The proposed system
is divided into two stages, sound event detection and context
recognition. A sound event detection system is used to de-
tect sound events present in the tested context and the event
histogram constructed from the recognition result is matched
with context models. The system is evaluated with ten con-
texts that may contain the same events. The overall system
scheme is presented in Figure 1.

The rest of this paper is organized as follows. Section 2
briefs the related work. Section 3 presents the event detec-
tion system, and Section 4 describes how detected events are
used in the context recognition. Section 5 explains the con-
text database used in the evaluation and the evaluation itself.
Section 6 provides conclusions and suggestions for further
study.

2. RELATED WORK

Automatic recognition of the context or environment based
on audio information is known from many earlier works.
However, most of the work on context recognition has been
done by directly recognizing the context from the acoustic in-
formation, without explicitly detecting the individual sound
events in the auditory scene. Eronenet al. [2] presented
an approach to recognize 24 everyday context with mel-
frequency cepstral coefficients (MFCC) and hidden Markov
models (HMM). They reached a 58% recognition accuracy
against 69% obtained in a human listening tests using the
same material. The study in [3] presented an HMM-based
environmental noise classification system and reported over
91% accuracy in classifying 10 contexts using three second
test segments. The authors also performed a listening test
on the same data. The listeners’ performance for the three



seconds segments was significantly worse than the system
performance. More recently, Chuet al. [4] proposed an ap-
proach using matching pursuit to select a small set of time-
frequency features to represent each context. They achieved
a 84% performance for 14 contexts for four second segments
using these features jointly with MFCC. The used contexts
were chosen to be as different as possible to minimize over-
lapping.

One of the approaches to use sound events in the con-
text recognition was presented in [5]. The authors propose a
framework for detection of key audio effects in a continuous
stream. The optimal key effect sequence is determined using
Viterbi decoding, controlled by a two-loop network defin-
ing possible transitions between sound effects. They use 10
audio effects, distinct enough to be perceived, with models
trained using isolated audio effects from Web. The different
audio effects are modeled using HMMs with 5 to 11 states
per model, trained with various features. The authors treat
overlapping events by using the label of the dominant one for
that region. The detected audio effects are used to recognize
the scene as one of 5 possible (non-overlapping) categories-
humor, pursuit, etc. More recently, the authors proposed an
unsupervised co-clustering approach for the same task [6].
Authors of [7] propose an audio keywords generation system
for sports videos. Low-level features are extracted from au-
dio and after off-line feature selection hierarchical SVM is
used find audio keywords. Hidden Markov models are used
to detect the semantic events in sports videos. The system
was tested with soccer, basketball, and tennis videos.

Sound event detection from audio signals can be per-
formed in an unsupervised or supervised manner. In the un-
supervised approach, the categories of sound events are not
specified beforehand but distinct portions of the audio signal
are detected as potential events, e.g. via clustering [8]. In the
supervised approach, predefined sound event classes are used
to segment and classify sound events. In [9], we presented a
sound event detection system for the meeting room environ-
ment using MFCC based features and a HMM classifier.

3. EVENT DETECTION

The sound event detection in the proposed context recogni-
tion system is based on continuous density HMMs and the
audio signal power spectrum is represented with MFCCs.
These short-term features represent the coarse shape of the
spectrum and provide a good discriminative performance
with reasonable noise robustness. The system uses 16
MFCCs calculated from the outputs of a 40-channel filter-
bank. In addition to the static coefficients, their first and sec-
ond order time differentials are used to describe the dynamic
properties of the cepstrum. Features are extracted in 20 ms
frames with a 50% frame shift.

We train 61 HMMs to represent 61 sound event cate-
gories. Three-state left-to-right HMMs are trained with the
standard Baum-Welch training procedure using a training
database that will be described in Section 5.1. The proba-
bility density of each state is modeled using Gaussian mix-
ture models (GMM) having 16 components. The sound event
HMMs are connected into a single HMM with equal transi-
tion probabilities between the event models.

Manually annotated recordings with overlapping events
were used for training the event models. An audio segment
where multiple events overlap is included in the training data

of all the classes present in that segment. This means includ-
ing the same observation vectors to train multiple event mod-
els. In the detection stage, features are extracted for the entire
audio clip, and the event detection is organized in two ways.
Event detection over the entire recording is done using the
Viterbi algorithm to obtain the most likely event sequence.
However, the order of the sound events will not be used in
the context recognition. In addition to this, we use isolated
event recognition over four second segments by finding the
event HMM that has most likely produced the observation
sequence of each segment. In this case, the system is used
to recognize the most prominent event in each segment.A
more detailed explanation of the event detection system can
be found in [10].

4. CONTEXT RECOGNITION

We assume that each context is characterized by the presence
of certain sound events. The event histogram for a record-
ing is constructed by collecting all the sound events into an
event occurrence histogram. In order to prevent a bias to-
wards longer recordings, the event counts in the histogram
are divided by the number of events present in the recording.
The models for the contexts are constructed by summing up
these event histograms. The context model histogram is nor-
malized so that the bins sum up to one.

In the recognition stage, an event histogram is collected
from the events that are detected in the tested recording. His-
tograms are calculated either from the output of the Viterbi
segmentation or by accumulating the events recognized in
the four second segments. The context recognition is based
on comparing this histogram with the context histogram.

The event histograms are compared by calculating a dis-
tance between them. In the preliminary studies, we tested
three distance metrics for the task: the cosine distance, the
correlation distance and one based on the Kullback-Leiber
divergence. Since they provided rather similar performance,
in the final system we chose to useonly one of them, the co-
sine distance. The cosine distance is defined as the cosine of
the angle between an event histogram for contextC and an
event histogram for tested recordingQ:

Distcos(Q, C) =
∑T

i=1 qici
√

∑T
i=1 q2

i ∑T
i=1 c2

i

, (1)

whereqi is the normalized event count of eventi in the tested
recording,ci is the normalized event count of eventi in the
context andT is number of events in the vector. The con-
text corresponding to the closest distance is selected as the
recognition result.

In order to better model the within context variation in
the distribution of events,k-nearest neighbor (k-NN) classi-
fication is also used. Withk-NN, all the recordings in the
training database can be used to represent the context they
belong to. In this case each context is represented by sev-
eral event histograms, each calculated from a single record-
ing in the training database. Distances to each recording are
calculated and the context recognition is done by majority
voting among classes corresponding to thek nearest context
instances.



4.1 Weighted event histograms

A weighing scheme for the events can be developed in a
similar manner to the term frequency–inverse document fre-
quency (TF-IDF) used for document indexing [11, 12]. In
our case, the indexing term is the sound event and the doc-
ument is a recording from a specific context or the entire
context depending on the evaluation setup. The main idea
of TF-IDF is that a term is an important indexing term for
documentd if it occurs frequently in it. This is denoted as
term frequency (TF). On the other hand, terms which occur
in many documents are rated less important for indexing due
to their widely common nature. This is denoted as inverse
document frequency (IDF) and it is defined as follows:

IDF(term) = log

(

|D|

DF(term)

)

(2)

where|D| is the total number of recordings andDF(term) is
the number of documents in which the term occurs at least
once. The inverse document frequency of a term is low if it
occurs in many documents and is highest if the term occurs
in only one. The weightwi of a term i in documentd is
calculated as

Wi = T F(termi,d)• IDF(termi), (3)

whereTF(termi,d) is the term frequency, i.e., the number of
timestermi occurs in the documentd.

In the training stage, IDF is collected from the training
data and event histograms (TF) for contexts are weighted. In
the testing stage, event histogram (TF) is collected from the
test data and IDF calculated from the training data is used in
the weighting of the event histogram.

5. EVALUATION

The proposed context recognition system is evaluated with
an audio database collected from real-life environments. The
database is used to train the event detection system and the
context recognition system. Two different methods for ob-
taining the events are evaluated. In the first method, event
recognition is done by splitting each recording into four sec-
ond segments and classifying each segment as correspond-
ing to the most likely event. The events detected in the seg-
ments within the tested recording are collected to form an
event histogram. The second method uses the Viterbi algo-
rithm to obtain the most likely event sequence for the entire
recording and this sequence will be used to construct the his-
togram. In addition to this, two different methods for model-
ing each context are evaluated. The first method is to charac-
terize each context by one histogram constructed from all the
events. In the second method each recording belonging to a
context is used as an example of that context andk-NN clas-
sification is used. We also study the effect of the test segment
length on the recognition accuracy in detail.

5.1 Database

The material for the database was gathered by recording 10
to 30 minute long recordings in ten real-life environments or
contexts. The selected audio contexts were basketball game,
beach, inside a bus, inside a car, hallway, office, restaurant,
grocery shop, street and stadium with track and field events.
For each context, 8 to 14 recordings were made with binau-
ral microphones placed inside the human ears. In total, 103

Table 1: Event statistics from the database.

Context
Number of

present
event

classes

Total
number of

events

Average
events per

1 min.

basketball 14 990 11.3
beach 16 738 3.7
bus 14 1729 12.0
car 12 582 5.3
hallway 9 822 7.4
office 12 1220 12.3
restaurant 13 780 7.8
shop 14 1797 20.4
street 15 827 7.6
track & field 11 793 6.9

Table 2: Context-wise average recognition performances.

4 sec.
segments

Viterbi
segmentation

Cosine 88.5 84.5
TF-IDF 61.1 59.3

stereophonic recording was included in the database.In this
paper, we are using monophonic versions of the recordings,
i.e., two channels are averaged to one channel.

The recordings were manually annotated indicating the
start and end times of all clearly audible sound events in the
auditory scene. The repetitive sound events are usually anno-
tated as long events, e.g. ball hitting the floor in the basket-
ball game, while long events like conversation are annotated
as multiple successive speech events if there is perceivable
pause in the conversation. Annotated sound events present in
the recordings were grouped into 61 event classes. The event
classes include e.g. speech, laughter, applause, car door,
road, dishes, door, chair, music, and footsteps. Each context
contains events from 9 to 16 event classes and many event
classes appear in multiple contexts. There are also event
classes which are context specific. Event statistics from the
recording database are presented in Table 1. Figure 2 shows
the event histograms collected from the database.

The database was organized in a five-fold manner into
training and testing sets, to test all the available recordings.
The audio of the training set is used to train the event detec-
tion system and histograms of annotated event class occur-
rences are used to train the context recognition system.

5.2 Event based recognition

The results for event based context recognition are presented
in Table 2. “Cosine” denotes a system were the distance be-
tween the estimated event histograms and the context his-
tograms is calculated with the cosine distance. “TF-IDF”
denotes a system were the event histograms are TF-IDF
weighted before calculating the cosine distance. Two meth-
ods of collecting events are used in this evaluation. The
method where event recognition is done with four second
segments is denoted as “4 sec. segments” and the method
using Viterbi decoding is denoted as “Viterbi segmentation”
in the table.

The full confusion matrix for the system ’Cosine’ is
shown in Table 3.Some of the confusions are understandable
when looking at the sound events present in the contexts. For
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Figure 2: Normalized event histograms for contexts.

Table 3: Confusion matrix for context recognition using
event histograms. Rows in the matrix correspond to pre-
sented context and columns to the recognition result.

1 2 3 4 5 6 7 8 9 10

basketball 1 100

beach 2 64 36

bus 3 9 91

car 4 100

hallway 5 60 20 10 10

office 6 10 90

restaurant 7 10 90

shop 8 100

street 9 10 90

track & field 10 100

example, in the hallway there are footsteps and ventilation
noise present while footsteps are also present in the street
context and similar ventilation noise in the office context.

Recognition results usingk-NN approach with varying
values fork are presented in Table 4.In this case, TD-IDF
weighting helps the context recognition and provides a better
performance than when using unweighted histograms. Since
the idea of TF-IDF is to weigh rare events more than the
common ones, collecting all the events from the database to
form only one context model for each context will average
out the rare events within each context and the recognition
will only become more difficult.

5.3 Combining event and direct acoustic information

In addition to the event based context recognition, a sys-
tem based on acoustic information of contexts was evaluated.
More specifically, we constructed a baseline system where
each of the ten contexts is modeled with a GMM (16 Gaus-

Table 4: Multiple context instances and kNN based recogni-
tion.

k = 1 k = 3 k = 5 k = 7 k = 9
4 second segments
Cosine 87.3 84.6 85.8 84.8 83.8
TF-IDF 89.3 85.6 84.6 85.5 86.6
Viterbi segmentation
Cosine 86.4 84.6 84.6 82.6 81.5
TF-IDF 89.3 87.5 87.5 89.4 89.4

Table 5: Context-wise average recognition performances.

4 sec.
segments

Viterbi
segmentation

Baseline 88.5
Cosine + Baseline 91.4 92.4
TF-IDF+ Baseline 90.5 90.4

sians) and using MFCCs (static, first and second order time
derivatives). The test recordings for this system are cut into
four second segments which are then classified individually.
This system is later referred as the baseline system.

Since the baseline system models global acoustic charac-
teristics of the audio context instead of sound events, it may
provide complementary information compared to the pro-
posed event based system. Combining these two may thus
lead to improved performance. To combine these two sys-
tems, the distance between the test event histogram and the
context histograms are mapped into probabilities using an in-
verted sigmoid-function. The mapped probabilities are then
multiplied with the context likelihood produced by the base-
line system.

The evaluation results are presented in Table 5. “Base-
line” denotes the system based on acoustic information of
contexts and “Cosine+Baseline” denotes the system where
the output of the baseline system is combined with the event
based context recognition system without TF-IDF weighting.
“Baseline+TF-IDF” denotes a system were the weighting of
the event histograms is used.The proposed context recogni-
tion system provides comparable recognition accuracy with
the baseline system (see Tables 2 and 4). The recognition
accuracy is slightly improved when the proposed system is
combined with the baseline system.

The full confusion matrix for the baseline system is
shown in Table 6. The full confusion matrix for the system
where the output of the baseline system is combined with
the proposed event based system without TF-IDF weighting
(see Table 3) is presented in Table 7.By comparing the con-
fusions in Tables 6 and 7, one can see that the event based
system increased the performance on the bus and hallway
contexts. Confusions of the bus context are now made with
the street context which is understandable since they share
some sound events.

5.4 Test segment length

The effect of different test segment lengths on the recognition
accuracy was evaluated. Evaluation was done by construct-
ing the event histogram from the classification results of dif-
ferent number of four second segments. Using the baseline
system, the likelihoods of successive four second segments
are accumulated over time. The recognition results based on
the test segment length are shown in Figure 3 for the baseline
system and the system usingk-NN approach.



Table 6: Confusion matrix for context recognition using the
baseline system.

1 2 3 4 5 6 7 8 9 10

basketball 1 100

beach 2 73 9 18

bus 3 73 9 18

car 4 100

hallway 5 50 30 20

office 6 10 90

restaurant 7 100

shop 8 100

street 9 100

track & field 10 100

Table 7: Confusion matrix for context recognition using the
“Cosine+Baseline” system with Viterbi segmentation.

1 2 3 4 5 6 7 8 9 10

basketball 1 100

beach 2 73 9 18

bus 3 91 9

car 4 100

hallway 5 80 20

office 6 10 90

restaurant 7 100

shop 8 100

street 9 10 90

track & field 10 100

5.5 Discussion

TF-IDF weighting was found to help recognition only when
using multiple examples of one context, represented by the
recordings in the training database. This is due to the fact
that TF-IDF weights rare events more than the common ones
and having only one model for the complex contexts will
smooth out the rare events. Furthermore, this weighting has
problems with short segments having small amount of events
which are all common events, and thus will be weighted to
zero.

The performance of the event based system is not supe-
rior to the baseline system. The system is more complex and
requires long test segments to work properly. However, it
gives complementary information (sound event labels) com-
pared to a single context label assigned to the recording.
The baseline system performs nicely with contexts which are
acoustically distinguishable. Combining the event based sys-
tem with the baseline system provides slightly better accu-
racy and robustness with acoustically similar contexts.

6. CONCLUSIONS

In this paper, event histograms were used for context recogni-
tion. Recognition was evaluated on a database consisting of
103 recordings from ten different contexts. The best recog-
nition result, 89.4% correct, for the event based recognition
was obtained using multiple context instances from the train-
ing database and ak-NN classification approach. When com-
bining the event based context recognition with a baseline
context recognition system, the performance was increased
to 92.4%.

In the future, other classification methods than distance
metrics andk-NN will be studied. For example, training sup-
port vector machines with the event histograms might pro-
vide better recognition results.
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