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ABSTRACT

This paper proposes a method for separating the signals of individual

musical instruments from monaural musical audio. The mixture sig-

nal is modeled as a sum of the spectra of individual musical sounds

which are further represented as a product of excitations and filters.

The excitations are restricted to harmonic spectra and their funda-

mental frequencies are estimated in advance using a multipitch es-

timator, whereas the filters are restricted to have smooth frequency

responses by modeling them as a sum of elementary functions on

Mel-frequency scale. A novel expectation-maximization (EM) algo-

rithm is proposed which jointly learns the filter responses and orga-

nizes the excitations (musical notes) to filters (instruments). In simu-

lations, the method achieved over 5 dB SNR improvement compared

to the mixture signals when separating two or three musical instru-

ments from each other. A slight further improvement was achieved

by utilizing musical properties in the initialization of the algorithm.

Index Terms— Sound source separation, excitation-filter

model, maximum likelihood estimation, expectation maximization.

1. INTRODUCTION

Sound source separation means estimating the signals of individual

sources from a mixture. The task is closely related to auditory scene

analysis where, for humans, segregating the sounds of simultane-

ously active sources is an important part of making sense of com-

plex auditory scenes. In this paper, we consider source separation in

monaural music signals: separating the signals of individual musical

instruments from a single-channel mixdown. Applications of this

include musical instrument recognition in polyphonic audio, music

remixing (emphasis or suppression of certain instruments), flexible

processing and manipulation of music, audio coding, and analysis of

the individual instruments’ signals. Many of these applications do

not require perfect separation quality, but robust segmentation of the

time-frequency plane according to the sources.

Separation of multiple sources has been recently studied using

various approaches. Some are based on grouping sinusoidal compo-

nents to sources (see e.g. [1]) whereas some others utilize a struc-

tured signal model [2, 3]. Some methods are based on supervised

learning of instrument-specific harmonic models [4], whereas re-

cently several methods have been proposed based on unsupervised

methods [5, 6, 7]. Some methods do not aim at separating time-

domain signals, but extract the relevant information (such as instru-

ment identities) directly in some other domain [8].

In this paper, we propose a source separation method based on

the excitation-filter model of sound production. The excitation part
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corresponds to a vibrating system (such as a guitar string) and in-

volves pitch information, whereas the filter corresponds to the body

response of an instrument (such as the piano soundboard) which

colours the spectrum of the sounds produced by the instrument. The

excitation signals are first estimated using a multipitch estimator [9].

Then we propose a novel expectation-maximization (EM) algorithm

which jointly learns the filter responses and organizes the excita-

tions (notes) to filters (instruments). Contrary to the model we have

proposed earlier in [10], here each note is assigned only to one in-

strument (with a certain probability), and the parameter estimation is

done in the maximum likelihood sense. The proposed method is able

to handle polyphonic sound sources that produce multiple notes si-

multaneously, for example separating piano and electric guitar from

each other. As a side-product, the method produces note pitches and

organization of notes to their instruments.

2. SIGNAL MODEL

2.1. Excitation-filter model

We use the excitation-filter signal model, where excitations corre-

spond to different pitch values (notes) and these are filtered by the

body response that is characteristic to each instrument. The resulting

spectra of individual musical sounds are then summed to obtain the

mixture magnitude spectrum x̂t(k):

x̂t(k) =

Nt
X

n=1

gn,ten,t(k)hi(n,t)(k) (1)

where gn,t is the gain of note n at time t and en,t(k) is the note’s ex-
citation spectrum. Magnitude response of the filter corresponding to

instrument i is denoted by hi(k) and i(n, t) denotes the instrument
that played note n at time t.
The filter hi(k) is further represented as a linear combination of

fixed elementary responses

hi(k) =
J

X

j=1

ci,jaj(k) (2)

where we choose the elementary responses aj(k) to consist of
triangular bandpass responses, uniformly distributed on the Mel-

frequency scale fMel = 2595 log10(1 + fHz/700). The responses
are illustrated in Fig. 1. The J coefficients ci,j encode the spectral

shape of instrument i. Representing the filters this way makes the
estimation more robust since J ≪ K (number of frequency bins).
To start with, let us consider a situation where the note-

instrument associations i(n, t) are given. Estimating these will
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Fig. 1. The elementary responses used to represent the filters hi(k).
The responses are uniformly distributed on the Mel-frequency scale.

be considered in the next subsection. For the sake of mathematical

tractability, we assume the following observation noise model:

p(xt(k)|θ, zt) ∝ exp(−d(xt(k), x̂t(k))) (3)

where∝ denotes equality up to a scalar multiplier that is independent
of the model variables, and d(x, x̂) denotes the divergence

d(x, x̂) = x log(x/x̂)− x + x̂. (4)

In the likelihood function (3), xt(k) is the observed magnitude spec-
trum value and x̂t(k) is the value given by the model (1)–(2). For
convenience, we use θ ≡ {gn,t, en,t, ci} to denote all the model
parameters at all times, and the symbol zt to represent the infor-

mation regarding all the note-instrument associations i(n, t) at time
t. The noise model (3) and maximum-likelihood estimation lead to
minimizing KL divergence between the observations and the model,

which has produced good results in earlier sound separation studies

[7]. This is equivalent to assuming that the observations are gener-

ated by a Poisson process with mean value x̂t(k).

2.2. Associating notes to instruments

Let us now consider the case where the note-instrument associations

are not given in advance. If there are Nt concurrent notes at time t,
there are INt different ways of organizing the notes to I instruments.
For example, if there are three notes and two different sound sources,

the possible note-instrument associations are
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where the second vector, for example, means that note 1 is associated

with instrument 2 and notes 2 and 3 are associated with instrument

1. The task of choosing one of the above vectors is here called note

labelling: assigning each note a number which tells its sound source.

Let us arrange the different note-labelling alternatives in matrix

I of size (N × IN ). Entries of the matrix are given by

i(n, z) = 1 +mod
“j

(z − 1)/I(n−1)
k

, I
”

(6)

where n = 1, . . . , N and z = 1, . . . , IN . Here ⌊·⌋ denotes rounding
towards the negative infinity and modulo mod (x, y) ≡ x− y⌊x/y⌋.
It is easy to verify that in the case of three notes and two instruments,

(6) will give a matrix I where the eight vectors (5) are as columns.

We will treat the integer zt as an unknown latent variable that

determines the instrument i(n, zt) of all notes n in the frame t. How-
ever, estimating z is here done only in a probabilistic sense. Let us

denote by αt(z) ≡ p(zt) the probability of note-labelling z at time
t. In each frame t, the probabilities sum to unity,

P

z
αt(z) = 1.

Note that the matrix I remains the same in all frames if the number

of instruments I is constant: matrices for varyingNt are obtained as

submatrix at the upper left corner of I calculated for maximum Nt.

In order to estimate the note-instrument associations zt for t =
1, . . . , T , we include the probabilities αt(z) as a new parameter in
our model. Let us denote the augmented parameter vector by Θ ≡
{gn,t, en,t, ci, αt(z)}, where the probabilities αt(z) for all z at all
times are included.

The probability density function (pdf) of the observed spec-

trum xt(k) is now calculated by summing over the different note-
instrument associations, weighted by their probabilities:

p(xt(k)|Θ) ∝
X

z

αt(z) exp [−d(xt(k), x̂t,z(k)] . (7)

Above, we have denoted

x̂t,z(k) =

Nt
X

n=1

gn,ten,t(k)hi(n,z)(k)

=

Nt
X

n=1

gn,ten,t(k)
J

X

j=1

ci(n,z),jaj(k) (8)

where the latter form is obtained by substituting from (2). Please ob-

serve that above i(n, z) is now the filter (instrument) index, varying
along with z. It is worth comparing (7) with (3) where the note-
instrument associations were assumed known.

We assume that the observation noise in all frames and at all

frequencies is independent. This means that the observations in all

the frames and frequencies are conditionally independent given the

model parameters. Thus the whole pdf ofX is given by

p(X|Θ) ∝
Y

t,k

X

z

αt(z) exp [−d(xt(k), x̂t,z(k)]

=
Y

t

X

z

αt(z) exp

"

−
X

k

d(xt(k), x̂t,z(k)

#

(9)

The idea of the parameter estimation is to find such parameters Θ
that the above likelihood function p(X|Θ) is maximized.

3. PARAMETER ESTIMATION

3.1. Multipitch analysis

The excitation spectra en,t(k) are estimated independently of all the
other model parameters. First, a multipitch estimator proposed by

Klapuri in [9] is used to estimate note pitches Ft(n), n = 1, . . . , Nt

in each analysis frame t.
Based on the pitch value Ft(n), the corresponding excitation

en,t(k) is constructed by summing Hamming-windowed sinusoidal
components at integer multiples of the pitch frequency Ft(n). These
“harmonic combs” extend over the entire frequency range consid-

ered (up to 10 kHz) and have a unity magnitude for all the harmonics.

An example excitation spectrum is shown in Figure 2.

The number of concurrent notes (polyphony)Nt is not estimated

at this stage, but instead, five simultaneous pitches are estimated in

each frame. It is the task of the subsequent EM algorithm to find

near-zero gains gn,t for the exraneous notes. In frames where the

actual polyphony is higher than five, we assume that the estimated

five pitches model the signal sufficiently well.
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Fig. 2. An example excitation spectrum en,t(k) corresponding to
pitch value 500 Hz.

3.2. Expectation maximization algorithm

This section describes an iterative parameter estimation method

based on the expectation-maximization (EM) algorithm [11]. EM

algorithm operates by initializing the parameters Θ to some initial
values Θ0 and then iteratively repeating the E step and M step (de-

scribed below), so as to increase the value of the likelihood function

p(X|Θ) at each iteration until the likelihood value converges.
Let us denote by z = z1z2 · · · zT the entire sequence of latent

variables (note-instrument associations) over time. In the E step of

the algorithm, we evaluate the posterior probabilities p(z|X, Θ) (in
contrast with the priors αt(z)). The posterior probabilities βt(z) ≡
p(z|X, Θ) of different note-instrument associations z at time t are
given by

βt(z) =
αt(z) exp

ˆ

−
P

k
d(xt(k), x̂t,z(k)

˜

P

z′ αt(z′) exp
ˆ

−
P

k
d(xt(k), x̂t,z′(k)

˜ (10)

where x̂t,z(k) is defined in (8). The entire posterior p(z|X, Θ) is
the product of marginals p(z|X, Θ), since the observation noise is
assumed independent in each frame.

In the M step, we calculate Θnew given by

Θnew = arg max
Θ

Q(Θ, Θold) (11)

where

Q(Θ, Θold) = Ez|X,Θ [ln p(X, z|Θ)]

=
X

z

p(z|X, Θ) ln p(X, z|Θ). (12)

Above, summing over zmeans summing over all possible sequences

z = z1z2 · · · zT . After some algebraic manipulation (omitted here

for space constraints), the above formula simplifies to

Q(Θ, Θold) =
X

t

X

z

βt(z) [ln αt(z)− d(xt(k), x̂t,z(k))] (13)

where the first term is maximized by updating αt(z) ← βt(z) and
the latter term is recognized as weighted divergence. The entire func-

tion can be maximized by the following updates

gn,t ← gn,t

P

i,j,k
en,t(k)ci,jaj(k)

P

z∈Zn,i
βt(z) xt(k)

x̂t,z(k)
P

i,j,k
en,t(k)ci,jaj(k)

P

z∈Zn,i
βt(z)

ci,j ← ci,j

P

n,t,k
gn,ten,t(k)aj(k)

P

z∈Zn,i
βt(z) xt(k)

x̂t,z(k)
P

n,t,k
gn,ten,t(k)aj(k)

P

z∈Zn,i
βt(z)

αt(z)← βt(z) (14)

where set Zn,i is defined as Zn,i = {z : i(n, z) = i}. In other
words, the summing in the update formulas is performed only over

the values of z where note n is associated with instrument i.
Summary of the overall parameter estimation is the following:

1) Initialize the probabilities αt(z) for all t and z with random
noise uniformly distributed between zero and one. Normalize

so that
P

z
αt(z) = 1 in all frames t. Initialize the gains gn,t

and the filter coefficients ci,j with absolute values of Gaus-

sian noise.

2) Evaluate βt(z) using (10).

3) Update gains gn,t, filter coefficients ci,j , and note-instrument

association probabilities αt(z) using (14). The updated pa-
rameters constitute Θnew.

4) Evaluate the total likelihood ln p(X|Θ) using (9) and return
to Step 2 if the likelihood has changed more than some con-

vergence threshold ǫ.

3.3. Resynthesis of source signals

Magnitude spectrograms corresponding to individual instruments i
are estimated as

yi,t(k) =
x̂Θ

i,t(k)

x̂Θ
t (k)

xt(k) (15)

where xt(k) is the observed mixture spectrum, x̂Θ
i,t(k) are instrument-

specific spectra obtained from the model with parameters Θ,

x̂Θ
i,t(k) =

Nt
X

n=1

X

z∈Zn,i

αt(z)gn,ten,t(k)
J

X

j=1

ci(n,z),jaj(k) (16)

and xΘ
t (k) =

P

i
x̂Θ

i,t(k).
Time-domain signals are generated by using phases of the mix-

ture signal and inverse discrete Fourier transform.

3.4. Algorithm initialization utilizing musical properties

The above-presented estimation algorithm is already complete and

able to separate the individual instruments’ signals. In this section,

we describe an “add-on feature” which utilizes musical assumptions

of voice leading to improve over the random initialization of the al-

gorithm in Step 1 of Sec. 3.2.

One property of voice leading in music is that consecutive notes

arriving from the same singer/instrument are relatively close in pitch.

Because the spectral shape (filter) of the instrument remains rather

constant too, the entire spectra of notes arriving from the same in-

strument resemble each other.

The initialization of the proposed method can be slightly im-

proved by tentatively grouping the excitations to instruments already

after the multipitch estimation, based on their spectral shape. In

practice, we computedMel-frequency cepstral coefficients (MFCCs)

of a spectrum that was constructed by picking only the spectral com-

ponents corresponding to the harmonics of excitation n from the
mixture spectrum xt(k). K-means clustering algorithm was then
used to assign the excitations to I clusters. Then, instead of random
initialization of αt(z), we initialized them so that each excitation
was given probability 1− (I − 1)η of having come from the instru-
ment to which it was tentatively assigned, and a smaller probability

η of having come from the other instruments. Note that this only af-
fects the initialization of the EM algorithm, which then updates and

corrects the initial values of αt(z).
This algorithm is denoted by “proposed method + musical ini-

tialization” in the simulations.



Table 1. Average SNRs of the separated signals

Number of instruments in mixture 2 3

SNR before separation 0.0 dB -3.0 dB

Separated with proposed method 5.1 dB 2.4 dB

Proposed method + musical initialization 5.8 dB 2.6 dB

4. RESULTS

Simulation experiments were carried out to evaluate the performance

of the proposed method. Acoustic signals for the experiments were

obtained by synthesizing pieces from the RWC Popular Music

database [12]. MIDI synthesis was used in order to obtain the sig-

nals of individual instruments which were then mixed to obtain the

test signals. A total of 50 MIDI files were randomly selected from

the database and then synthesized using Timidity software synthe-

sizer and a high-quality GeneralUser GS 1.4 soundfont. To allow

maximally realistic synthesis, all control messages in the MIDI files

were retained.

A five-second segment was randomly selected from among the

leading 90 seconds of each piece to constitute the test excerpt. The

number of concurrent instruments was controlled so that that only

the signals of two or three instruments were mixed to produce each

test excerpt, in order to keep the separation task feasible. The instru-

ments were randomly selected from among all pitched instruments in

the piece, however so that the probability of including an instrument

in the test case was proportional to the time span that the instrument

was active in the randomly chosen segment. This was done to avoid

including “silent most of the time” instruments.

It should be noted that although the number of instruments in

a test file is only two or three, the number of concurrent notes can

be much higher, since many instruments, such as piano or guitar,

produce multiple notes at a time. The instruments occurring in our

test signals were the following (occurrence frequencies in paren-

theses): a/e bass (31), a/e guitars (29; 19 of which electric), a/e

pianos (25), flutes (22), strings (15), synthesizers (8), brass instru-

ments (6), mallet percussions (4), organs (4), reed instruments (3),

percussion/effects (3), where “a/e” denotes acoustic/electric.

Separation quality was measured by calculating the signal-to-

noise ratio, SNR = 10 log10

P

t
s(t)2/

P

t
[ŝ(t)− s(t)]2, where

s(t) and ŝ(t) are the reference and the estimated signal, respectively.
The SNRs are then averaged over all separated signals.

Table 1 shows the obtained average SNRs using the proposed

source separation method. As can be seen, the proposed method

achieves more than 5 dB SNR improvement compared to the mixture

signal before separation. Including musical properties in the initial-

ization bring an additional slight improvement. This verifies that the

proposed method is able to separate sources from the mixture and

organize the notes to the instruments in an unsupervised manner.

Measuring SNRs is not completely fair, since minimizing the di-

vergence (4) does not minimize reconstruction error in least-squares

sense, but emphasizes more small-magnitude spectral regions that

are also perceptually more important. Examples of separated signals

are available at http://www.cs.tut.fi/sgn/arg/klap/icassp2010/

5. CONCLUSIONS

A method was proposed for separating musical instruments from

polyphonic music signals. The method is able to handle polyphonic

instruments such as piano and guitar, and achieves over 5 dB SNR

improvements (compared to the mixture signal before separation)

without any prior information about the analyzed signals, except the

number of sources I . This indicates that only assuming the gen-
eral structure of music signals shown in the signal model (7)–(8)

enables source separation in complex music signals. Source sepa-

ration arises naturally from the estimation of the parameters of the

structured signal model. As a side-product, the method produces

note pitches and organization of notes to their instruments. Utiliz-

ing musical properties in the initialization of the algorithm yields a

slight further improvement. A drawback of the method is relatively

high computational complexity, especially for large I .
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