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Abstract
This paper proposes a sound event detection system for nat-
ural multisource environments, using a sound source separa-
tion front-end. The recognizer aims at detecting sound events
from various everyday contexts. The audio is preprocessed us-
ing non-negative matrix factorization and separated into four
individual signals. Each sound event class is represented by
a Hidden Markov Model trained using mel frequency cepstral
coefficients extracted from the audio. Each separated signal is
used individually for feature extraction and then segmentation
and classification of sound events using the Viterbi algorithm.
The separation allows detection of a maximum of four overlap-
ping events. The proposed system shows a significant increase
in event detection accuracy compared to a system able to output
a single sequence of events.
Index Terms: sound event detection, sound source separation,
non-negative matrix factorization

1. Introduction
Humans live in a complex audio environment, and have very
good skills of following a specific sound source while ignoring
or simply acknowledging the others. For example we can follow
a conversation in a busy background consisting of other people
talking or music. The performance of automatic methods in
computational auditory scene analysis (CASA) is much more
limited in this task. Acoustic mixture signals contain multiple
simultaneously occurring sound events, and machine listening
systems are still far from the level of human performance in
recognizing them.

Individual sound events can be used to describe an audio
scene: they could represent in a symbolic way a scene on a
busy street, with cars passing by, car horns and footsteps of
people rushing. The different level descriptors represent con-
text (street) and characteristic events (car, car horn, footsteps).
Sound event detection and classification aims at processing the
acoustic signal and converting it into such symbolic descrip-
tions of the corresponding sound events present at the scene,
for applications related to automatic tagging, automatic sound
analysis or audio segmentation.

Previous studies related to sound event detection consider
audio scenes with overlapping events that are explicitly anno-
tated, but the detection results are presented as a sequence that
is assumed to contain only the most prominent event at each
time. In this respect, the systems are finding one event at each
time, and the evaluation considers the output correct if the de-
tected event is inlcuded in the annotations. The performance of
such systems is very limited in case of rich multisource envi-
ronments.
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Sound source separation methods have emerged in recent
years for extracting a specific sound source from the mixture.
Supervised sound source separation methods are used to sepa-
rate the signal belonging to one sound source of interest. Un-
supervised methods do not use any knowledge about the sound
sources, and will usually not separate a specific sound source
but a signal with roughly homogeneous spectral content that
differs significantly from the background.

In this paper, we propose a sound event detection system
that can recognize and temporally locate overlapping sound
events in recordings belonging to various audio contexts. The
signals are preprocessed using an unsupervised non-negative
matrix factorization (NMF) based algorithm in order to sepa-
rate sound sources into tracks. Each of these tracks represents
a combination of the physical sources present in the original
signal. Event detection is performed on each track. The separa-
tion offers the possibility of surpassing the performance levels
of previous systems, by giving the possibility of detecting si-
multaneous events in the multisource environment. The system
is evaluated with a database of audio recordings from ten every-
day contexts.

The rest of this paper is organized as follows. Section 2
presents a review of related work in event detection and sound
source separation. Section 3 presents the sound source sepa-
ration and Section 4 presents the event detection system. Sec-
tion 5 explains the database used in the evaluations and the ex-
perimental results. Section 6 provides conclusions and sugges-
tions for further study.

2. Related work
Applications of sound event detection from audio include analy-
sis of video sound tracks [1, 2], audio scene recognition [3, 4, 5],
audio context recognition [6] or plain acoustic event detection
[7]. The cited studies are done on small sets of sound events
and small set of environments, and usually the sound events
and audio examples are chosen so to minimize overlapping be-
tween different categories. In case of overlapping sound events,
the annotation considers the most prominent one. There are
few studies that consider the case of overlapping sound events.
In [7] and [8], the annotation was done to include overlapping
events, but the output of the systems is a sequence of non-
overlapping events. The detection result ideally consists of a
sequence of the most prominent sound events, and the evalua-
tion metric in [7] is developed for that situation. To our knowl-
edge, there is no work that considers modeling and detecting
overlapping events for event detection.

The system we presented in [8] for event detection in real
life recordings, is based on hidden Markov models (HMM). We
trained HMMs for 61 sound event classes using mel-frequency
cepstral coefficients (MFCC) extracted from the acoustic mix-



ture signal. For event detection, the Viterbi algorithm was used
to decode the best path through the HMM states, with the 61
model HMMs connected into a network. The system was eval-
uated against annotations that mark overlapping events, and the
detection accuracy is therefore limited by the possibility of de-
coding only one event at each time, while the annotations con-
tained simultaneous events. The sound separation will help
overcome this limitation.

Sound source separation aims at separating a mixture sig-
nal consisting of multiple additive sources into source signals.
Recently, NMF based source separation has produced good re-
sults in many applications [9]. The basic NMF separates a sig-
nal into sources in an unsupervised manner, i.e., without prior
knowledge about the sources.

Supervised source separation utilizes some prior informa-
tion about the sources. The prior information can include de-
tailed models for the spectra of the source of interest [10, 11,
12], or pitch of the sound obtained by a pitch estimation al-
gorithm in a preprocessing stage [13, 14]. These algorithms
have been used to separate mixture signals and to classify the
resulting sources in speech [10, 12], singing [13], instrument
recognition [14], or music transcription applications [11].

3. Sound source separation
In sound source separation, a given input audio signal which
consists of multiple overlapping sounds (mixture signal) is de-
composed into its sound sources (ideally). For our sound event
detection, we will use a sound source separation method that
is based on non-negative matrix factorization of the magnitude
spectrogram of the mixture signal [9].

When applied on a spectrogram representation of audio,
NMF models the signal as a sum of components, each of which
has a fixed magnitude spectrum and a time-varying gain. Since
the algorithm is unsupervised, we cannot strictly control the
outcome of the factorization, but the components correspond
to redundant sound objects in the mixture signal. Each sound
source in the mixture signal can become represented as the sum
of one or more components. Each component can contain parts
from one or more sound sources, but typically the factorization
achieves good separation of sound sources.

The processing steps of our NMF based separation algo-
rithm are as follows:

1. Window the input signal into frames using a 60 ms Ham-
ming windows with a 25 % overlap and calculate the
complex-valued spectrum Xt(f) in each frame t us-
ing the fast Fourier transform. Here f denotes the dis-
crete frequency index. Absolute values of the spectra are
stored in to a magnitude spectrogram matrix [X]f,t =
|Xt(f)|.

2. Calculate the non-negative matrix factorization X ≈
SA by minimizing the Kullback-Leibler divergence be-
tween the original spectrogram and a reconstructed spec-
trogram [15]. The number of components is fixed to four
in our system. The initial reconstruction of the magni-
tude spectrogram matrix Yn of component n is obtained
as [Yn]f,t = [S]f,n[A]n,t.

3. Reconstruct the complex spectrum Yt(f)n of compo-
nent n in frame t and frequency f as Yt(f)n =
Xt(f)[Yn]f,t/(

P
m[Ym]f,t). This corresponds to

Wiener filtering where the source power spectrum esti-
mate is given by the initial reconstruction of the magni-
tude spectrogram of the component, and the noise power

Figure 1: System overview.

spectrum estimate is given by the sum of the other com-
ponents.

4. Convert the complex spectrum of each component in
each frame to time domain by inverse fast Fourier trans-
form, and combine the frames using overlap-add. The
resulting time-domain signal of an individual component
is dubbed a track.

It is clear that environmental sounds with diverse characteristics
cannot be accurately modeled with the NMF model, i.e., with a
fixed spectrum and time-varying gain. However, the reconstruc-
tion of tracks by Wiener filtering explains better the functioning
of the algorithm: the time-varying Wiener filter of each com-
ponent separates a track which contains roughly homogeneous
spectral content that differs significantly from the other tracks.

The resulting separate tracks do not represent exact physi-
cal sound sources (like one track would be only sounds of foot-
steps), but a combination on the physical sources present in the
signal. Sound event detection will be performed on each of
the separated tracks. In this paper we are splitting the original
multisource spectrum into four tracks. This limits the sound
event detection to finding a maximum of four simultaneous
sound events, in agreement with the average polyphony of our
database.

4. Sound event detection
The overall system scheme is presented in Figure 1. Sound
source separation is applied on the mixture signal to produce
the separated tracks (T1, T2, ..., Tn). Feature extraction and
event detection is performed on each of these tracks separately.
The results from different tracks are collected and combined
into a multisource symbolic representation of the original sig-
nal, based on the total number of sound events that are recog-
nized. This representation is then evaluated against ground truth
annotations.

The event detection system consists of event class models
trained from real-world audio recordings. Each event model is
represented by a three-state left-to-right HMM with 16 Gaus-
sians per state. The set of features used for constructing
the models are the MFCCs (static, delta and acceleration):
16 MFCCs calculated on 20 ms windows with 50 % overlap.



Figure 2: Separation and segmentation procedure of the original audio for training sound event models.

4.1. Model training

Each event instance annotated in the database represents one
example for the event models. Regions of the sound that contain
overlapping events were assigned to the relevant event classes
and will be used as examples for all overlapping classes.

The training data is preprocessed using the described NMF-
based method. Each recording is separated into four tracks and
the annotations are used to provide the segmentation into event
instances. Because of the unsupervised sound separation, we do
not have any knowledge about which track contains what event
from annotations. Therefore we assign the annotated event seg-
ment in all the separated tracks to training the annotated class.
The assumption behind this is that in training, the tracks that
do not contain relevant event classes will average out and the
models will learn a reliable representation of the sound events.
In general, the model should learn the acoustic representation
of the event and average out the extra information. Figure 2
illustrates the procedure of assigning segments for training the
sound event models.

We include a universal background model (UBM). This
model represents the overall properties of the data and is trained
by pooling all training material together. Its role in the event de-
tection system is to capture regions when no events of interest
are detected. This may happen at silent spots in the audio or in
cases where the models do not score high enough to be consid-
ered plausible by the decoder.

4.2. Event Detection

For event detection, the event models are connected into a
network HMM, having equal transition probabilities from one
event model to another. The output of the detection step is
an unrestricted sequence of the most likely model labels: any
sound event can follow any other and there is no limit for the
number of events. An optimal sequence of events is decoded us-
ing the Viterbi algorithm. The event detection is performed for
each separated track. Then, the results from individual tracks
are combined into a single description of the original audio.
The final output contains timestamps and labels for all the rec-
ognized events; overlapping events from two or more tracks that
carry the same label are combined into one compact represen-
tation.

5. Evaluation
The sound event detection system is trained and tested using
an audio database collected from real-life contexts. The sound
source separation based method is compared with a baseline
system which is trained and tested on mixture signals. A de-
tailed description of the approach used for constructing the
baseline system can be found in [8]. The training and testing
are done in a context-dependent manner, meaning that the num-
ber of sound event models trained and connected into a network
for detection is limited to the events that are found in the anno-
tation of the considered audio context.

5.1. Database

The material for the database was gathered by recording 10 to
30 minute long audio in ten different contexts. The selected
audio contexts were basketball game, beach, inside a bus, in-
side a car, hallway, office, restaurant, grocery shop, street and
stadium with track and field sports. The audio was recorded us-
ing binaural microphones placed inside the ears of the person
recording. Each context is represented by 8 to 14 recordings, to
a total of 103 recordings included in the database. In this study
we are using monophonic versions of the recordings, i.e., the
two channels are averaged to one channel.

The recordings were manually annotated indicating the start
and end time of all clearly audible sound events in the audi-
tory scene. Annotated sound events present in the recordings
were grouped into 61 event classes. The event classes include
e.g. speech, laughter, applause, car door, road, dishes, door,
chair, music, and footsteps. Each context contains 9 to 16
event classes and many event classes appear in multiple con-
texts. There are also event classes which are context specific.
The context-specific training and testing limits the number of
models to 9-16 per context instead of training all 61 classes as
we did in our previous work, and the material used for the train-
ing is also gathered only from the specific context.

5.2. Metric

Most of the previous studies found in the literature are concen-
trated on detecting non-overlapping events and the metrics pre-
sented in them are best suited for evaluating the monophonic



output of the detection system. In the CLEAR evaluation [7],
two metrics were defined for the sound event detection, one for
detection accuracy and one for the temporal resolution of the
detection. The detection accuracy was defined as the F-score
between precision and recall. A detected event was regarded
as correct if there was a certain degree of overlapping with an
event with the same label in the annotation. The temporal res-
olution error was calculated by counting the entire amount of
time that was wrongly attributed to events, divided by the total
amount time covered by the events. The exact description of the
two metrics can be found in [7]. We consider that these metrics
are hard to interpret for evaluating an output with overlapping
events, as it will be shown further in an example.

The recall of the system is limited by the number of events
it can output, compared to the number of events that are anno-
tated. As a consequence, even if the output contains only correct
events, the accuracy is limited. The temporal resolution error
represents all the erroneously attributed time, including events
wrongly recognized and events missed altogether by the lack of
sufficient polyphony in the detection. They are therefore com-
plementary and tied to the polyphony of the annotation. This
complicates optimization of the detection system into finding a
balance between the two.

In order to tackle this problem and give a single understand-
able metric, we propose a block-wise accuracy for polyphonic
case. This metric will evaluate how well the events detected in
non-overlapping time blocks coincide with the annotations. The
detected events are regarded only at the block level, for example
within 30 seconds. This metric is designed for applications re-
quiring fairly coarse time resolution, placing more importance
into finding the right events within the block than finding their
exact location.

Inside the blocks, we calculate precision and recall. Preci-
sion is defined as the number of correctly detected sound event
classes divided by the total number of event classes detected
within the block. Recall is defined as the number of correctly
detected sound event classes divided by the number of all refer-
ence event classes within the block. We calculate the accuracy
in each block by the F-score, based on precision and recall by
the formula:

fscore =
2 ∗ precision ∗ recall

precision + recall
(1)

An illustration of how this metric works can be seen in Fig-
ure 3. In block 1, the reference events are A, B, C and D; the
system output contains A, C and D. The A and C are correctly
detected. This means that for this block, precision is 2 out of 3
(2/3) and recall 2 is out of 4 (2/4). The calculated accuracy for
this block is 57.1 %. For the entire example, the average block
accuracy is 57.3 %.

For comparison, the CLEAR metrics calculated on the same
illustration are the following: precision is 6/10 and recall is
6/9, resulting detection accuracy of 63.2 %. For calculating
the time resolution error we count the units that are wrongly
labeled/missed: there are 56 of them. The total number of units
covered by the annotated events is 51, with a resulting time res-
olution error of 109.8 %.

5.3. Results

The database is divided into sets in a five-fold manner. One set
is used as development set and the remaining sets are used for
evaluating the system. Inside a set, 70 % of the material is used
for training and 30 % for the testing.

Figure 3: Block-wise accuracy for sound event detection.

The non-restricted Viterbi search for the optimum path re-
sults in an output containing a very large number of short events,
up to ten times more events than the total annotated events. To
control the length of the events, we introduce an extra cost at
the inter-model transitions. This will result in the Viterbi path
staying longer in each model if the cost of transitioning to a
new model is higher. The development set is used to search
the optimum value for this parameter. The cost value was cho-
sen to be the one that produced a reasonable number of output
events - order-wise close to the number of reference (ground
truth) events.

The baseline system is trained and tested using the origi-
nal mixture signal; the audio segment examples for training the
classes are extracted based on the annotations, and the same re-
gion of audio was included in all annotated overlapping classes
too. The baseline system uses the same development set as the
proposed system, but with independent cost parameter search.

The event detection results for the baseline system and the
proposed system are presented in Table 1. The overall perfor-
mance of the baseline system is 25.8 % for evaluating precision
and recall within 30 second blocks. This value is lower than
the accuracy presented in [8], where the system was using more
general models and outputting only a sequence of events. As
presented in Section 5.2, the proposed block-wise accuracy is
lower than the CLEAR evaluation accuracy. The 30 % perfor-
mance calculated according to the CLEAR evaluation metrics is
therefore meaningless without mentioning at the same time the
time resolution error, which was 84 %. The block-wise accu-
racy could be seen as the system performance in detecting the
correct events with a coarse time resolution, representing in a
way a combination of the CLEAR accuracy and time resolution
performance (opposite of the time resolution error).

Overall performance of the detection increases significantly
by using sound source separation as preprocessing in training
of the models and also in testing. Context-wise, the proposed
system performs much better than the baseline system, almost
doubling the overall accuracy. Individual contexts show 17 to
38 percent units improvement.



Table 1: Sound event detection results, accuracy calculated us-
ing the block-wise accuracy metric inside 30 second blocks.

baseline
system

proposed
system

Overall 28.2 52.6

Context
Basketball 30.3 68.2
Beach 23.0 38.7
Bus 24.4 57.6
Car 18.8 46.7
Hallway 37.0 51.1
Office 30.1 49.7
Restaurant 25.4 54.2
Shop 27.7 56.2
Street 26.4 50.1
Track & Field 41.7 57.4

The sound source separation algorithm brings important
improvement not just in the numbers, but conceptually. The
proposed system is able to detect overlapping events, whereas
the baseline system is only producing monophonic output.

6. Conclusions
This paper presented a sound event detection system capable
of detecting overlapping events in natural multisource environ-
ments. The audio is preprocessed in the sound source sep-
aration stage, and separated into four individual tracks rep-
resenting combinations of the physical sources present in the
signal. Sound event detection is applied to each track sep-
arately. We use recordings from ten everyday environments.
In the evaluations, sound source separation was found to sub-
stantially increase the sound detection accuracy. In addition
to this, the proposed system produces a conceptually accurate
symbolic representation of the environment by detecting over-
lapping events. Thus, we conclude that the proposed method
improves the sound event detection performance by producing
more accurate and more realistic results.
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