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Abstract—In this paper, the use of multi label neural net-
works are proposed for detection of temporally overlapping
sound events in realistic environments. Real-life sound record-
ings typically have many overlapping sound events, making it
hard to recognize each event with the standard sound event
detection methods. Frame-wise spectral-domain features are
used as inputs to train a deep neural network for multi label
classification in this work. The model is evaluated with record-
ings from realistic everyday environments and the obtained
overall accuracy is 63.8%. The method is compared against a
state-of-the-art method using non-negative matrix factorization
as a pre-processing stage and hidden Markov models as a
classifier. The proposed method improves the accuracy by 19%
percentage points overall.

I. INTRODUCTION

Sound event is the audio segment that humans would label
as a distinctive concept in an acoustic signal [1]. The aim
of automatic sound event detection is to recognize the sound
events present in a continuous acoustic signal. Monophonic
sound event detection deals with the most prominent event
at a time instance and polyphonic detection tackles the situ-
ations where multiple sound events happen simultaneously.
The applications of sound event detection include multimedia
indexing [2], scene recognition for mobile robots [3] and
surveillance in living environments [4].

The additive nature of sound sources makes it difficult
to find the robust features to detect them in polyphonic
audio. Conventional classifiers that have been used in speech
recognition and monophonic detection are not as successful
in polyphonic detection. Monophonic sound event detec-
tion systems handle the polyphonic data by detecting only
the prominent event, resulting with a loss of information
in realistic environments [5]. Polyphonic detection is es-
sential to get high accuracy in complex auditory scenes.
State-of-the-art polyphonic detection systems are using Mel-
Frequency Cepstral Coefficients (MFCC) to characterize the
audio signals and using Hidden Markov Models (HMMs) as
classifiers with consecutive passes of the Viterbi algorithm
[6]. Recently, non-negative matrix factorization (NMF) was
used as a pre-processing step to decompose the audio into
streams and detect the most prominent event in each stream
at a time [1]. However, the fixed constraint of the NMF on the
number of overlapping events reduces its practicality when
this number is not known a priori. The estimation of the
number of overlapping events can be bypassed when using
coupled NMF, as shown in [7]. In [8], local spectrogram
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features were combined with Generalized Hough Transform
(GHT) voting system to detect the overlapping sound events.
This offers a different path than traditional frame-based
features and achieves high accuracy, being evaluated on five
different sound events and their combinations.

Polyphonic detection can be formulated as a multi label
classification problem. Multi label problem can be addressed
by applying single label classification for each of the classes
and combining the results. However, the single label en-
coding of the problem discards the correlation structure
between the classes resulting in a weak expressive power [9].
Therefore, multi label classification is necessary to obtain
the most of the available information from the real-world
data. Some of the applications of multi label classification
are used in overlapping sound event recognition [8], scene
classification [10] and text categorization [11].

In this paper, we propose to use multi label feed-forward
deep neural networks (DNN) for polyphonic sound event
detection. In our earlier paper, we have shown that with
sufficient numbers of hidden layers, hidden units and training
data, DNNs can outperform HMM methods in sound event
classification tasks [12]. However, in this paper we extend
the work of [12] by encoding the problem as a multi
label learning task with no limitations to the number of
simultaneous events. the motivation of our work is that DNN
can use different sets of its hidden units to model multiple
simultaneous events in a given time instance, benefiting
from a different nature of nonlinearity than the conventional
mixture models [13]. We use spectral domain features to
characterize the audio signals and DNNs to learn a mapping
between features and sound events. The contribution of this
paper is to extend the use of DNNs to the multi label
analysis of realistic recordings from everyday environments
and model overlapping sound events in a natural way. We
also propose a post-processing method to filter the noise
in the DNN outputs. The highly realistic and diverse audio
material used in this work offers a firm insight on the
usability of the method in real-world applications.

The structure of the paper is as follows: the task of the
polyphonic sound event detection and the feature extraction
process are explained in Section 2. The input-output structure
and the architecture of the DNN is described in Section 3.
A post-processing method to smoothen the DNN output is
explained in Section 4. Section 5 contains the experimental
results on the highly realistic material and comparison with
the baseline results. In the end, our conclusions on the topic
are given in Section 6.
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Fig. 1: Framework of the training and testing procedure for the proposed system.

II. SOUND EVENT DETECTION

The main objective of the proposed method is to tempo-
rally locate the sound events in a recording collected from a
realistic auditory scene and give each event a label from a
set of possible labels. The framework of the proposed sound
event detection method is shown in Figure 1.

Auditory scenes are composed of multiple sound events
occurring at the same time. Detecting the events separately
from a realistic auditory scene leads to a multi label classi-
fication problem. Figure 2 illustrates the polyphonic nature
of sound events in realistic environments.

As a pre-processing step for the feature extraction, the
recordings are amplitude normalized, divided into frames and
Hamming window with 50 ms duration and 50% overlap is
applied. The spectral domain features (e.g. Mel-band and
log Mel-band energies) and cepstral domain features (e.g.
MFCCs) are extracted from the short time frames of the
audio signal. For each time frame, a feature vector x; is
obtained, where ¢ is the frame index. Each feature vector
corresponds to a learning instance for the neural network.

In order to extract the dynamic property information
of the signal, a frame concatenation method is used. The
feature vectors that are extracted from the adjacent time
frames are concatenated together to form a single training
instance. The resulting feature vector has a dimension of
x| = (2 X Nuj + 1) x Ny where N,gj is the number of
adjacent frames concatenated with the original frame and Ny
is the number of features extracted from the short time frame.
This method is often called context windowing and has been
used in many other studies as well [12], [14], [15].

For each frame, target output vector y, includes the multi
label encoding of the audio events present in the frame. Each
sound event is assigned to a class which is encoded as a
single binary variable. The events present in a frame are
annotated with 1 and the rest is 0. An illustrative example of

frame ¢

)
@ e D
Cwen )| | (e )
@ gD @
L Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il time(t)

Fig. 2: Overlapping sound events in a recording from a
realistic environment. Frame ¢ represents the short time
frame from the recording where only car and dog barking
events are present.

annotation can be found in Figure 2, where the target output
vector y for frame ¢ is y, = [1 0 1]. The number of possible
classes is known in advance and therefore the length of the
output vector is fixed, but the number of active events in a
frame is not known a priori.

III. MULTI LABEL NEURAL NETWORK

Feed-forward neural networks with multiple hidden layers,
i.e., deep neural networks (DNN) are used for multi label
classification. Deep architectures build a hierarchy among
the features. In each layer, higher level features are extracted
implicitly by the composition of lower level features. This
automatic structure eases the work of learning highly non-
linear functions mapping the input to the output directly
from data, therefore reducing the need to find human-crafted
intermediate representations [16].

DNNs are composed of an input layer, multiple layers of
hidden units with nonlinear activation functions and an out-
put layer. The input vector x; consists of the spectral features
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Fig. 3: Symbolic representation of the NN topology with two
hidden layers and multi label outputs.

extracted from frame ¢. For simplicity, frame index ¢ will be
omitted during the feed-forward algorithm description.

The output vector h* € RM for layer k with M units
is calculated from the weighted sum of the outputs for the
previous layer h*~1 € RP. Starting with h® = x and

gt =WFnFl bk 1<k < L (1)
h* = f(g") @
where W* € RP*M s the weight matrix between (k — 1)

layer with D units and k™ layer with M units, b¥ € RM is
the bias vector for the k™ layer, L is the number of layers
and f(-) is the nonlinear activation function applied element-
wise. Output hY € RY is used as the source presence
prediction vector y = h”, where §(i) is the source presence
prediction for the event ¢ € [1,2,..N] and N is the number
of sound events. During the training stage, y is involved
in calculating the cost function, explained below in detail.
During the testing stage, ¥ is binarized with a threshold to
get the binary detection vector z;. An illustration of a small-
scale DNN with binarized output is presented in Figure 3.
Maxout function [17] for hidden layers and logistic
sigmoid function (bounded between O and 1) for output
layer are used as activation functions in DNN structure.
Maxout is a piecewise linear activation function which
can be seen as a generalization of rectified linear units
[18]. Maxout calculates the maximum of a set of R affine
projections of the input. In mathematical terms, given
g" = [¢%0),¢%(1),...,d%(j),...g"(M x R —1)], for non-
overlapping pools of size R, maxout function implements
h* (i) :Iﬁaggg’“(jw) where j=i- R (3)
=
where h* € RM, g& € RM*E for layer k with M units
and R is the number of affine feature mappings. Hidden
units with maxout functions at each layer are divided into
non-overlapping pieces and each piece generates a single
activation via the max pooling operation, as illustrated in
Figure 4. Unlike conventional optimization functions, max-
out is not bounded, it is easier to optimize and does not
suffer from vanishing gradients problem by sparsifying the
gradients [14].
Stochastic gradient descent (SGD) algorithm is used as
the learning algorithm for the DNN. Training cost function
for the neural network is selected as Kullback-Leibler (KL)
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Fig. 4: Maxout activation function with R =
mappings.

3 feature

divergence, as it is able to characterize the general accuracy
of the class membership probabilities [19]. KL divergence is
calculated as

ZYt

7Yt( )log ¥, (i)
+ (1 —y,(9)) log (1 — y,(4))
— (1 =y, (i) log (1 — y,(i)) €]

where y, (i) is the target output for the i*" event, y,(i) is the
source presence prediction obtained from the output layer for
the i event and N is the total number of event classes. For
binary y,, as in our case, some terms in (4) drop out and the
resulting KL divergence is

L(y,lly;) = )logy, (i

N
L(y.[ly,) Z —¥,(i) log y,(4) )
1

—(1 —y;(4)) log (1 — y,(4))

The DNN parameters such as number of hidden units,
learning rate, initial weight bias etc. are selected by a grid
search over the parameter values. The instances are processed
over mini batches of size 50. The most successful topology
for this task is found to be DNN with 2 hidden layers with
800 units each.

IV. POST-PROCESSING

Environmental sound events naturally take at least a few
seconds, once they are initiated. When we experimented
with environmental audio, we noticed some abrupt changes
between consecutive frames in the detection probabilities for
some of the events. Our reasoning to this is as follows. The
audio is processed in very short time frames and the events
may contain intermittent periods. The annotation of the audio
material is done with a rather coarse time resolution, since
a human annotator would miss these less (if any) active
frames in the events and do the annotation for larger chunks
of frames. Although these frames are erroneously annotated
with some of the labels, they do not have the spectral
characteristics of the labels associated with them. Moreover,
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Fig. 5: Median filtering based post-processing method.

a greater problem occurs if the DNN /earns these instances as
belonging to a specific class with rather noise-like spectrum,
such as the sound of rain or the wind on trees.

This causes some undesired intermittent behavior and
noise in the DNN detection probabilities.

In order to filter this noise and smoothen the outputs in
the testing stage, a median filtering based post-processing
approach is implemented. The source presence predictions
y, are obtained from the output layer of the DNN and then
binarized by using a certain threshold value to give the binary
estimation vector z;. For each frame, the post-processed
output z; is obtained by taking the median of the binary
outputs in a 10-frame window as

3, = 1,med1an.(z(t_9):t) =1 ©)
0, otherwise
The method is continued by sliding this 10-frame window
by 1 when every new frame is processed through the DNN.
The effect of the median filtering on the detection outputs is
illustrated in Figure 5.

V. EVALUATION

The proposed method is evaluated on realistic recordings
from everyday contexts and compared with the baseline
system. In addition, three different features are experimented
individually: Mel-band energies, log Mel-band energies and
MFCCs. The accuracy for various polyphony levels and the
effect of post-processing is also investigated.

A. Acoustic Data

The evaluation sound database contains recordings from
various everyday environments. The same database has been
previously used in different experiments on sound event
detection [1], [5], [6]. It consists of a total of 103 recordings
and each of them are 10 to 30 minutes long. The total
duration of the recordings is 1133 minutes. Recordings were
done using 44.1 kHz sampling rate and 24-bit resolution.
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Fig. 6: The percentage of the amount of the sound material
as a function of the polyphony level.

The recordings are collected from 10 different contexts:
basketball match, beach, public bus, car, hallway, office,
restaurant, shop, street and stadium. For each context, 8 to
14 recordings are present.

There are 61 different event classes categorized in this
database. The start and end times of the events are manually
annotated from the recordings. Some of the events included
in the database are “’brakes squeaking”, “cheering”, “referee
whistle” etc. In each context, 9 to 16 events are present.
Some of the events can be found in multiple contexts (e.g.
”speech”) and some of the events are context specific (e.g.
”ball hitting the floor”). The total duration of each event
in the database can be found in Figure 7. This database is a
valuable source considering the lack of publicly available en-
vironmental polyphonic sound databases in the field. Figure
6 illustrates the amount of frames with different polyphony
levels in the whole database.

B. Evaluation Procedure

As the evaluation metric, F1 score is calculated inside non-
overlapping one-second blocks. If an event

« is detected in one of the instances inside a block and it
is also present in the same block of the annotated data,
that event is regarded as correctly detected.

e is not detected in any of the instances inside a block but
it is present in the same block of the annotated data, that
event is regarded as missed.

« is detected in one of the instances inside a block but it
is not present in the same block of the annotated data,
that event is regarded as false alarm.

For each one-second block, the number of correct, missed

and false alarm events are accumulated. Precision and recall
are calculated according to these variables as

. correct
precision = (7
correct + false alarm
correct
recall = —— )

correct + missed

For each block, these two metrics are combined as their
harmonic mean, F/ score, which can be formulated as

2 X precision X recall

©))

F1 score = —
precision + recall

The results are presented by taking the average F1 scores
of the one second blocks which correspond to the specific
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Fig. 7: The amount of annotated data (in seconds) and the accuracy for each sound event.

concept (context, polyphony level etc.) F1 score is referred
as the accuracy throughout the rest of the paper.

Calculating the accuracy in one-second blocks is plausible 80%
for three different reasons. Firstly, the aim of the sound event 65 66 66 gy
detection is to detect an event with certainty when it happens, 60%
rather than finding the exact start and end time of the event
with very high precision. Secondly, monitoring the outputs in
every second and calculating the accuracy gives a reasonable
time resolution without losing crucial information. Lastly,
as noted in Section IV, the annotations have rather coarse
time resolution. Therefore, in some cases they do not exactly
match the time frames that they are annotated with, but
they are nevertheless found in a one-second range. One-
second block evaluation helps to compensate these minor
mismatches in the annotations.
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Fig. 8: Context-wise detection accuracies for proposed sys-
tem with a comparison to the baseline system.

C. Results

The proposed system is evaluated with stratified five-fold
cross-validation. Once the features are extracted from all the
recordings in the database, the feature data set is divided
into five non-overlapping folds and one fold is used in the
development stage for determining parameters of the DNN.
The results from the other folds are averaged and presented.

TABLE I: Grid search range for essential DNN parameters
and the final values used in the experiments.

The grid search range and the final selected value for some Parameter ‘ Range | Final

essential DNN parameters during the development stage are Learning rate 0.001 - 1.0 0.02

presented in Table I. Log Mel-band energies are used as # hidden layers 2-5 2
# hidden units (in each layer) 100 -1000 800

features in all the experiments, except the varying feature
experiment given in Table II.

Our system, DNN with 2 hidden layers of 800 units
each, log Mel-band energy features with 5-frame context

Initial weight range +0.001 - £0.05 | £0.001
Context window length 1-13 5



TABLE II: Overall detection accuracies with different input
features before and after post-processing (PP).

Feature | Before PP | After PP
MFCCs 53.5 56.8
Mel-band energies 56.0 60.4
Log Mel-band energies 57.2 61.7

window, is evaluated against the baseline system [1], which
is the state-of-the-art method for the polyphonic detection.
The baseline method consists of decomposing the audio
into different streams by non-negative matrix factorization.
For each audio stream, sound event detection is done using
MFCCs as features and HMM as a classifier. In our exper-
iments, we observed that DNNs do not necessarily require
this kind of sound source separation based pre-processing to
determine how many events are active in a time instance.
As illustrated in Figure 8, the proposed system outperforms
the baseline method by a huge margin. Depending of the
context, proposed method offers an increase in accuracy
between 9-39% among different contexts and 19% units
average increase. Due to the natural diversity of each context,
the variance of the accuracy between contexts is quite high.

The relationship between the amount of annotated data and
the accuracy for each sound event is illustrated in Figure 7.
Differing from other experiments, the accuracy is calculated
for each single sound event and therefore represents the
single label accuracy. There is a clear correlation between the
amount of data and the accuracy for each event. This brings
the fact that DNNs require large training databases to learn
the mappings between the features and the sound events.
This also shows that there is still room for improvement in
accuracy once the audio database is expanded. On a related
note, we also investigated using shorter frame lengths and/or
higher overlap in order to create more instances for the DNN
learning. However, this increased the detrimental effect of the
erroneous annotations without providing a significant boost
on the accuracy. Nevertheless, the effect of the frame length
is not investigated exhaustively in this work and therefore
out of the scope of this paper.

The overall accuracy of the model trained with different
features are presented in Table II. Mel-band energies and log
Mel-band energies are calculated in 40 Mel-bands and the
number of static MFCC coefficients are chosen to be 16,
a standard value in event detection methods. The topology
of DNN is kept fixed (except the number of inputs) while
using different features in order to make a valid comparison.
There is a slight increase in accuracy for Mel-band and log
Mel-band energies over MFCCs. This can be explained with
the loss of information caused by selecting the first few
coefficients after the Discrete Cosine Transform (DCT) [13].
Another point would be that the sum of the MFCCs of
different sound sources are not equal to the MFCCs of the
mixture of these sources.

The detection predictions y, are binarized with various
thresholds and the accuracy for each polyphony level (i.e.,

TABLE III: F1 scores for various binarizing thresholds
and polyphony levels for the proposed system after post-
processing.

| 02 03 04 05 06 07 08 09

1| 446 518 576 625 660 669 645 563
2| 51.8 568 597 61.1 61.1 589 542 444
3| 557 593 609 613 598 566 504 39.1
4| 603 633 645 645 632 60.1 546 428
5|645 655 652 645 625 593 533 407

the number of simultaneously active sound events) is given
in Table III. For the majority of the levels, the accuracy takes
its highest value around the threshold 0.5, which suits with
the default guessing of a threshold for a prediction between
0 and 1. The accuracy is higher for high threshold values in
the low polyphony levels. This can be explained by the fact
that the prominent sound events have very high prediction
value, i.e., probability in lower polyphony levels and using
high threshold effectively clears the non-present sound events
with lower probability. On the other hand, the accuracy is
higher for low threshold values in the high polyphony levels.
Since the activation function for the output layer of the DNN
is logistic sigmoid, the detection probabilities are bounded
between 0 and 1. However, the sum of the predictions for
each sound event is not bounded at all and this sum increases
when the polyphony level is increased. When two events
with similar spectra are simultaneously active, they share a
lower probability compared to the case that only one of them
is active. The detection probabilities are distributed over a
higher number of sound events in high polyphony levels.
Therefore, a lower threshold is required in order to detect
multiple sound events.

The detection accuracy as a function of the polyphony
level is given in Figure 9. Binarizing threshold value is fixed
at 0.5 for all polyphony levels. The effect of median filtering-
based post-processing is clearly visible, especially for lower
polyphony levels. Post-processing offers a great boost on the
accuracy for lower polyphony levels, i.e., when less events
are simultaneously active. As explained in Section IV, post-
processing compensates the DNN’s tendency to map the
frames with low activity, which are found in low polyphony
levels, to the non-present sound events. These frames hardly
ever appear in very high polyphony levels, hence the ef-
fectiveness of the post-processing diminishes. The mapping
of low activity frames with non-present events also explains
the decreased accuracy in lower polyphony levels before the
post-processing.

VI. CONCLUSIONS

In this paper, using multi label DNNs for polyphonic
sound event detection in realistic environments was pro-
posed. Multi label DNN classification with median filtering-
based post-processing was observed to be able to detect
overlapping sound events with high accuracy. The proposed
method outperforms the baseline method by 19%. Spectral
domain features from short time frames of audio material
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Fig. 9: Detection accuracy vs. polyphony level for the
proposed system before and after the post-processing.

were extracted and used as input for the DNN. A post-
processing method is proposed which increases the detection
accuracy, especially when the number of simultaneously
active events in a frame is lower than 4. It is also observed
that using a higher binarizing threshold for low polyphony
levels provide a better detection accuracy and vice versa. For
future work, implementing better post-processing methods
to handle the noise in the DNN output is planned. Training
method extensions such as momentum and weight decay can
also be implemented. Investigating more informative features
for higher accuracy and robustness is also possible. Another
future work direction would be to do the multi label DNN
classification for each context separately, which requires a
significant amount of data for each context and the reason
why we choose the context independent approach in the first
place.
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