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Avainsanat: musiikin siséltoanalyysi, musiikin luokittelu, automaattinen musiikki-
tyylin tunnistus, kuuntelukoe, soitinten havaitseminen.

Digitaaliset musiikkikokoelmat ovat yleistyneet viime vuosina. Samalla kun namé
kokoelmat laajenevat tulee digitaalisen siséllon hallinta yha tédrkedmmaéaksi. Tés-
sd diplomityossa tutkitaan sisédltopohjaista akustisten musiikkisignaalien luokitte-
lua musiikkityylin (esim. klassinen, rock) seké kdytettyjen soitinten pohjalta. Thmi-
sen kykyé tunnistaa musiikkityyleja tutkittiin kuuntelukokeella. Tamé diplomityo
kattaa kirjallisuustutkimuksen ihmisen musiikkityylin tunnistuksesta, nykyaikaisista
musiikkityylin tunnistusjérjestelmistd sekd muista aiheeseen liittyvistad aloista. Li-
siksi esitelladn monikayttoinen musiikkitietokanta joka koostuu dédnityksista seké
niiden manuaalisesti tehdyistd annotaatioista. Myos tyosséd kédytettyjen piirteiden
sekd luokittimien teoria selostetaan ja tehtyjen simulaatioiden tulokset esitelldan.

Kehitetty musiikkityylin tunnistusjérjestelma kayttda mel-taajuus kepstrikertoimia
esittdmédn musiikkisignaalin aikamuuttuvaa magnitudispektrid. Musiikkityylikoh-
taiset piirrejakaumat mallinnetaan piilotetuilla Markov malleilla. Soittimen havait-
semista musiikista tutkitaan vastaavalla jarjestelmélla. Lisdksi tassa tyossa esitetadan
menetelméa rumpusoitinten havaitsemiseen. Rumpusoitinten ldsnéolo musiikissa tun-
nistetaan havainnoimalla jaksollisuutta signaalin alikaistojen amplitudiverhoké&yris-
Sé.

Suoritettu kuuntelukoe osoittaa, ettd musiikkityylin tunnistus ei ole yksiselitteis-
t& edes ihmiselle. Ihmiset pystyvét tunnistamaan oikean musiikkityylin keskiméérin
75 % tarkuudella (viiden sekunnin néytteilld). Lisédksi tulokset osoittavat, etté ih-
miset pystyvit tunnistamaan musiikkityylin melko tarkasti ilman pitkéan aikavalin
temporaalisia piirteitd, kuten rytmi. Kuudelle musiikkityylille kehitetty automaat-
tinen musiikkityylin tunnistusjirjestelmé saavutti noin 60 % tarkkuuden, joka on
vertailukelpoinen muiden vastaavien tunnistusjérjestelmien kanssa. Rumpusoitinten
havainnoimisessa saavutettiin 81 % tarkkuus kidyttien esitettyd menetelmaa.
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Collections of digital music have become increasingly common over the recent years.
As the amount of data increases, digital content management is becoming more
important. In this thesis, we are studying content-based classification of acoustic
musical signals according to their musical genre (e.g., classical, rock) and the instru-
ments used. A listening experiment is conducted to study human abilities to recog-
nise musical genres. This thesis covers a literature review on human musical genre
recognition, state-of-the-art musical genre recognition systems, and related fields of
research. In addition, a general-purpose music database consisting of recordings and
their manual annotations is introduced. The theory behind the used features and
classifiers is reviewed and the results from the simulations are presented.

The developed musical genre recognition system uses mel-frequency cepstral coef-
ficients to represent the time-varying magnitude spectrum of a music signal. The
class-conditional feature densities are modelled with hidden Markov models. Mu-
sical instrument detection for a few pitched instruments from music signals is also
studied using the same structure. Furthermore, this thesis proposes a method for
the detection of drum instruments. The presence of drums is determined based on
the periodicity of the amplitude envelopes of the signal at subbands.

The conducted listening experiment shows that the recognition of musical genres is
not a trivial task even for humans. On the average, humans are able to recognise
the correct genre in 75 % of cases (given five-second samples). Results also indicate
that humans can do rather accurate musical genre recognition without long-term
temporal features, such as rhythm. For the developed automatic recognition system,
the obtained recognition accuracy for six musical genres was around 60 %, which is
comparable to the state-of-the-art systems. Detection accuracy of 81 % was obtained
with the proposed drum instrument detection method.
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1 Introduction

Personal and public collections of digital music have become increasingly common
over the recent years. The amount of digital music available on the Internet has
increased rapidly at the same time. As the amount of data increases, efficient man-
agement of the digital content is becoming more and more important. However,
most of the indexing and labelling of the music is currently performed manually,
which is time-consuming and expensive.

Computers are being used to organise information in various domains, but the use of
computers to organise music has still been fairly limited. For example, the currently
available music search engines on the Internet rely on file names and embedded
metadata, and do not make any use of the acoustic signal itself. In this thesis,
we are studying content-based classification of acoustic musical signals according to
their musical genre (e.g., classical, jazz, rock) and the instruments used.

Music Information Retrieval (MIR) in general has gained increasing research atten-
tion over the recent years. Large-scale robust MIR systems will have, apart from
their academic merits, important social and commercial implications. They will
create significant value added to the existing music libraries by making the entire
collection of music easily accessible. The automatic analysis of the music information
will enable automatic classification, organisation, indexing, searching, and retrieval
of the music in these libraries.

Music information retrieval can be divided into symbolic MIR, where structured
signals (MIDI) are processed, and audio MIR, where audio signals are processed.
Some research issues are common to both symbolic MIR and audio MIR, since some
audio MIR methods transform an audio signal into some sort of structured form
before analysis. The audio MIR domain includes various acoustic signal analysis
problems; e.g., musical instrument identification, beat tracking, music transcription
(to notes), similarity estimation of music, song identification, and segmentation and
recognition of music signal based on different musical properties.

In the development of MIR systems, an appropriate music database is essential for
testing and evaluation. This thesis introduces a general-purpose music database to
be used in the evaluations in different areas of MIR. All the music pieces collected
for the database were manually annotated.
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1.1 Musical genre recognition

Music can be classified according to its genre, which is probably one of the most often
used descriptors for music. Musical genres are widely used for categorising music
in the record stores, radio stations, in all sorts of music libraries, and nowadays
increasingly on the Internet. Classifying music into a particular musical genre is
a useful way of describing qualities that it shares with other music from the same
genre, and separating it from other music. Generally, music within the same musical
genre has certain similar characteristics, for example, similar types of instruments
used, similar rhythmic patterns, or similar harmonic/melodic features.

We conducted a listening experiment to study human abilities to recognise musical
genres. The experiment shows that people without any formal musical training
can quite accurately and easily classify music into musical genres, even from short
excerpts. In general, people can easily make a clear distinction between classical
music and, say, rock music. However, musical genres do not have clear boundaries
or definitions since music is an art form that evolves constantly. A musical genre can
be considered always to be a subjective category with regard to both the listener
and the cultural background.

Automatic musical genre recognition has been a growing area of research in the
last few years [Jiang02, Tzanetakis02a, Burred03, 1Li03]. The research in the field
is mostly in its initial phase, and there are various subproblems that need to be
explored and studied. Practical applications of automatic musical genre recognition
include agents to search and select music (e.g. from a database or a radio station),
and generating playlists based on musical genre. Information about the musical
genre can also be utilised to control more specific MIR tasks, such as transcription,
segmentation, tempo estimation, and beat tracking. If we have some high-level
information about the music, such as the musical genre, we might be able to make
some assumptions and predictions about the music.

This thesis studies the automatic recognition of musical genres according to the
spectral characteristics of the music signal. Furthermore, the performance of the
developed system is compared with the human abilities in order to have a realistic
baseline for the performance.

1.2 Instrument detection

Instrumentation is an important high-level descriptor of music, thus providing useful
information for many MIR related tasks. In many cases, exactly expressible descrip-
tors are more efficient for information retrieval than more ambiguous concepts, such
as the musical genre. For example, someone might search for classical music by
requesting a piece with string instruments and without drums. Furthermore, instru-
ment detection is useful for the automatic musical genre recognition, since some of
the instruments are more characteristic for some genres. For example, electric guitar
is quite a dominant instrument in rock music, but is hardly ever used in classical
music.
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In this thesis, we study the detection of instruments and vocals in musical sig-
nals according to the spectral characteristics of the signal. Furthermore, we study
segmentation of musical signals according to the presence or absence of drum in-
struments. We propose a new approach to detect the presence of drum instruments
by detecting periodicities in the amplitude envelopes of the signal at subbands. The
presence and absence of drum instruments in music can be used in audio editing, or
in further analysis, e.g. as a front-end for music transcription, metrical analysis, or
rhythm recognition.

1.3 Organisation of the thesis

This thesis is organised as follows. Chapter 2 describes a literature review on au-
tomatic musical genre recognition and related fields of interest. Chapter 3 presents
the music database used in this thesis. Chapter 4 describes the listening experiment
studying human abilities in recognising musical genres. The experiment is later
used as a baseline for the performance evaluation of the developed automatic musi-
cal genre recognition system. Chapter 5 reviews the features and the classification
techniques studied. In Chapter 6, the automatic musical genre recognition system
is evaluated and the performance is compared to human abilities. We also evaluate
the instrument detection and the system locating segments with drums from music
signals. Chapter 7 summarises the observations made in this study and suggests
some directions for future work. Appendix A describes the musical genre hierarchy
used and Appendix B lists the pieces in the music database used in this research.



2 Literature review

This chapter reviews previous work in the fields that are relevant to this thesis.

2.1 Musical genre

The concept of musical genre is a dual one. On one hand, genre is an interpretation
of a music piece through a cultural background. It is a linguistic category providing
common term to talk about the music. On the other, it is a set of music pieces
sharing similar properties of music, like tempo and instrumentation. Musical genres
themselves are ill-defined: attempts to define them precisely will most probably end
up in circular structures. [Aucouturier03]

In order to keep things simple (within this thesis), musical genre can be considered
as a specific category of music, which shares common characteristics and proper-
ties that in the perception of the average listener distinguish a music performance
from performances belonging to other genres. There are many other factors, be-
sides the instrumentation and rhythmic structure, that have effect on musical genre
recognition done by humans.

2.1.1 Genre taxonomy

Different genre taxonomies can be applied when categorising music pieces into logical
groups within a hierarchical structure. Pachet et al. analysed in [Pachet00] existing
taxonomies of musical genres used by the music industry and Internet-based ven-
dors. Most of the taxonomies used by the music industry are album-oriented, while
albums often contain titles of various genres. This has an impact on the structure
of the taxonomies. They compared closely taxonomies used by a three Internet-
based vendor: allmusic.com (with 531 genres), amazon.com (with 719 genres) and
mp3.com (with 430 genres). The taxonomies have no shared structure, and there is
no consensus in the genre labels used. Large and commonly used genres like “rock”
or “pop” do not have a common definition and do not contain same pieces. Semantics
of forming the logical groups may vary even within the given taxonomies. Within
same taxonomy, there might be genres formed based on origin of music (e.g., latin
music), period of music (e.g., 60’s pop) or topic of music (e.g., love song). This is a
rather poor description scheme for the automatic musical genre recognition system.
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Because of these obvious problems in existing genre taxonomies, Pachet et al. pro-
posed in [Pachet00] the definition of new genre taxonomy purely for the purposes of
music information retrieval. The proposed taxonomy was designed to be as objec-
tive as possible and consistent throughout the taxonomy. The genre descriptors were
kept independent from other descriptors used in their metadatabase. Specific de-
scriptors were introduced to describe other musical features, e.g. instrumentation,
audience location, and danceability. In addition, the taxonomy was designed to
support similarity links between genres. Genres could have relations based on musi-
cal features (e.g. rhythm type, instrumentation, or orchestration), inheritance (e.g.
rock/alternatif /folk and rock/alternatif/ska), or string-matching (e.g. rock/latino
and world/latino).

2.2 Human performance for genre classification

There have not been many studies concerning the human ability to classify music into
genres. One of the studies was conducted by Perrot et al. [Perrot99]. They used a
ten-way forced-choice paradigm (with genres: blues, classical, country, dance, jazz,
latin, pop, r&b, rap, and rock) in their study. From each genre they had eight
pieces, four pieces with vocals and four without vocals. The pieces were labelled
according to the leading web-based record vendors. From each piece, five excerpts
with different duration were used in the study (250 ms, 325 ms, 400 ms, 475 ms,
and 3000 ms). The subjects for the study were 52 first-year psychology students at
the college level. The subjects used around 24 hours per week to listening to music
on an average. Excerpts were played in random order and subjects were asked to
decide on one of the ten genres for each excerpt.

For three-second samples subjects performed with 70 % accuracy compared to the
record companies’ original classification. For 250 ms samples the recognition ac-
curacy was still around 40 %. The recognition accuracy for instrumental samples
was slightly better for each time interval. These results are quite interesting be-
cause they show that humans can in fact recognise musical genres without using any
higher-level abstractions, like rhythm. The shortest 250 ms excerpts are by far too
short to enable perception of the rhythm, melody or to comprehend the structure of
music. This indicates that genre recognition can be done, at least to some extent,
only with spectral and timbral features (tone colour).

Soltau presented in his thesis a study of human abilities to recognise four musical
genres (classical, pop, rock, and techno) [Soltau97]. A total of 37 subjects with a
wide age-range were gathered for the experiment. For three-second samples, the
subjects achieved 85 % accuracy on average, which is comparable to the results
presented in [Perrot99], although the number of genres used was different. Most of
the confusions were made between pop and rock. Musical training was concluded to
have positive influence on the recognition accuracy. Listening habits of the subjects
were found to have an effect on the genre recognition abilities. The subjects who
had been exposed to a wide range of different music had better recognition abilities.
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Furthermore, the importance of short-term and long-term characteristics of the mu-
sic to the genre recognition was studied by properly modifying the samples. The
long-term characteristics of the music were destroyed by dividing the music signals
in 50 ms frames and playing them in a random order. The short-term characteristics
were attenuated by adding white noise to the signal. Based on the short-term char-
acteristics recognition accuracy was 70 % and based on the long-term characteristics
it was 80 %. Techno and rock music were recognised better based on the short-term
characteristics.

2.3 Automatic musical genre recognition

Recently, there has been more and more research focusing on the automatic musi-
cal genre recognition. Some of the most recent contributions are reviewed and the
approaches used are compared to give view of a state-of-the-art automatic musi-
cal genre recognition to a given taxonomy. In [Aucouturier03], Aucouturier et al.
provides a quite extensive review on some of the earlier contributions.

All the reviewed methods have three basic stages of a pattern recognition system:
frame-based feature extraction, training of the classifier based on examples, and
classification. First, the music signal is split into frames, and certain characteristics
of the music signal within the frames are represented with a feature vector. The
classifier is then trained with examples from each of the musical genres. Finally the
trained classifier is used to assign the feature vectors of the test data on the most
probable genres.

2.3.1 State-of-the-art

Table 2.1 summarises the reviewed automatic musical genre recognition systems.
The meanings of the acronyms used in the table are given in Table 2.2. A direct
comparison between systems is impossible due to the different genre taxonomies and
the different evaluation database. However, at least some conclusions can be drawn
by comparing the amounts of genre labels in taxonomy used and the amount of
individual pieces used in evaluations. Since there is so much variation in properties
of music even within a genre, a large evaluation database is required for proper
evaluation. In general, classical music seems to be easily distinguishable for all the
reviewed systems. Rock, pop, and jazz are more likely to be confused with each
other because of the similar instrumentation.

The selection of musical genre labels in the reviewed systems was narrow and the
genre labels were inconsistent. The systems are rather like a proof of concept than
complete and ready musical genre recognition systems. The number of genre labels
used varied between 4 and 13, and the selection of genres seems to be rather ar-
bitrary. However, there are also some similarities, most of the system used labels
to describe general genres like classical, rock, pop, jazz, and blues. Some systems
also used categories to identify speech and background noise in addition to music
[Tzanetakis02a, Burred03].
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Table 2.1: Summary of genre recognition systems.
used denoted with G and amount of individual pieces in the
evaluation database with DB.

Number of genres

Article G | DB | Features Classifiers | Accuracy
Soltau et al., 1998, | 4 | 360 | Cepstrum HMM 79%
[Soltau9s| ETM-NN | 86%
Pye, 2000, [Pye00] | 6 | 350 | MFCC GMM 92%
TreeQ 90%
Casey, 2002 8 | many| MPEG-7 Low-Level De- | HMM 95%
[Casey02] hours| scriptor (LLD)
Jiang et al., 2002 5 | 1500 | Spectral Contrast GMM 82%
[Jiang02]
Tzanetakis et 10 | 1000 | Timbral texture GMM 61%
al., 2002, Beat histogram
[Tzanetakis02a) Pitch content
Burred et al., 2003, | 13 | 850 | Timbral GMM 52%
[Burred03] Beat histogram
MPEG-7 LLD
Other
Li et al., 2003, 10 | 1000 | Daubechies Wavelet Co- | GMM 64%
[Li03] efficient Histograms k-NN 62%
LDA 1%
SVM 79%
Xu et al., 2003, 4 {100 | MFCC GMM 88%
[Xu03] LPC-derived cepstrum HMM 88%
Spectrum power k-NN 79%
ZCR SVM 93%
Beat spectrum
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Table 2.2: The acronyms used in Table 2.1.

ETM-NN Explicit Time Modelling LPC Linear Prediction Cod-
with Neural Network ing
GMM Gaussian Mixture Model MFCC Mel Frequency Cepstral
HMM Hidden Markov Model Coefficients
k-NN k-Nearest Neighbour SVM Support Vector Machine
clasifier TreeQ Tree-based Vector Quan-
LDA Linear Discriminant tization
Analysis ZCR Zero Crossing Rate

Tzanetakis et al. proposed feature sets for representing the timbral texture, rhythmic
content, and pitch content of music [Tzanetakis02a]. By combining these features
they achieved acceptable recognition accuracy (61 %) for ten musical genres. The
recognition accuracy based on just the rhythmic content or the pitch content was
quite poor (28% and 23%). However, they were still better than a random recogni-
tion and therefore provided at least some information about the musical genre. These
results can think to be a well-evaluated baseline for the automatic musical genre
recognition. In [Li03], a thorough and extensive comparative study was performed
between proposed Daubechies Wavelet Coefficient Histogram (DWCH) feature and
the features used in [Tzanetakis02a]. They used the same evaluation database than
was used in [Tzanetakis02a] to enable a direct comparison between these systems.
Based on their experiment for the features proposed in [Tzanetakis02a], they con-
cluded that the timbral texture is more suitable than rhythmic or pitch content for
musical genre recognition. The DWCH improved the recognition accuracy signifi-
cantly to 79 % (compared to 61 % obtained in [Tzanetakis02a]). Different classifi-
cation methods were also compared, but the choice of features seemed to be more
important than the choice of classifiers. The selected features have a much larger
effect to the recognition accuracy than the selected classifiers have. However, the
Support Vector Machine (SVM) was observed to be the best classifier for musical
genre recognition.

Jiang et al. proposed a new feature to represent the relative spectral character-
istics of music, spectral contrast feature [Jiang02]. Based on their evaluations, it
performed better in the genre recognition task than Mel-Frequency Cepstral Coeffi-
cients (MFCC). In general, the selection of genre labels used was quite “easy”, and
this partly explains the rather high performance (82 %). Burred et al. obtained
interesting results with a hierarchical classification approach and genre dependent
feature sets [Burred03]. In spite of high number of genres used, they achieved an
acceptable accuracy (52%) at the lowest level of hierarchy. The rather good recogni-
tion performances (above 85 %) reported in [Soltau98, Pye00, Casey02, Xu03] could
be partly explained with the narrow evaluation databases used, and partly with the
rather “easy” set of genres used.
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2.3.2 Features

Three main types of features have been explored in the automatic genre recognition:
timbre-related, rhythm-related, and pitch-related. The pitch is a perceptual at-
tribute of sound, defined as the frequency that is obtained by adjusting the frequency
of a sine wave of an arbitrary amplitude to match to the target sound [Hartmann96].
The timbre can be defined as a feature of sound that enables us to distinguish it
from other sounds with the same pitch, loudness, and duration [Houtsma97].

Timbre-related features

The instrumentation of a music performance is an important factor in genre recogni-
tion. The timbre of constituent sound sources is reflected in the spectral distribution
of a music signal. Thus most of the features used in reviewed systems describe the
spectral distribution of a signal.

Cepstrum coefficients, used in [Soltau98, Xu03|, and MFCC, used in [Pye00, Jiang02,
Tzanetakis02a, Burred03, Xu03], are a compact way to represent the coarse shape
of the spectrum. The Cepstrum is defined as the inverse Fourier transform of the
logarithm of the magnitude spectrum. Other definition for the cepstrum is based
on a Linear Prediction Coding (LPC), where the signal is approximated as a linear
combination of past signal samples with an all-pole filter. This source-model is
partially valid for the periodic signals produced by instruments or vocals. The poles
of this all-pole filter correspond the peaks in the power spectrum of the signal.
In MFCC, the frequencies are scaled non-linearly to the Mel-frequency scale before
taking the inverse Fourier transform. The Mel-frequency scale is used to approximate
the non-linear frequency resolution of the human ear by using the linear scale at the
low frequencies and the logarithmic scale at the higher frequencies [Houtsma95].
MFCC will be defined in detail in Chapter 5. In order to model spectral variation
of the data, the differential of the feature values between consecutive frames can be
added to the feature set (delta coefficients) (as used in [Pye00]). MFCCs are widely
used in many audio signal classification applications. For instance, they have proven
to be useful in speech recognition [Rabiner93], speaker recognition [Reynolds95], and
in musical instrument recognition [Eronen03a].

Much of the music available is in a compressed format nowadays. The computation
of MFCC and the compression of audio (MPEG-1 layer III) share a few common
steps: dividing the signal into Mel-frequency scale subbands, and decorrelating the
coefficients with the Discrete Cosine Transform (DCT). In order to avoid fully de-
compressing the audio before extracting MFCCs, a computationally efficient way
of deriving MFCC-like features, MP3CEP, from a partially decompressed MPEG
audio has been proposed [Pye00]. Approximately six times faster feature extrac-
tion was achieved for MP3CEP with an acceptable decrease in recognition accuracy
compared to the MFCC.

The MPEG-7 standard [MPEO1] includes standardised spectrum-based features for
sound recognition. The use of these for automatic musical genre recognition has
been studied in [Casey02, Burred03]. The extraction method of the MPEG-7 audio
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features closely resembles the extraction method of MFCC with few major differ-
ences. The MPEG-7 audio features use the logarithmic frequency scale as opposed
to the Mel-frequency scale used in MFCC. The dimensionality of the feature vectors
is reduced in the MFCC feature extraction with the DCT using same DCT bases
for all the audio classes. In MPEG-7 audio feature extraction, the dimensionality is
reduced with the Principal Component Analysis (PCA) performed on distinct PCA
space derived from the training examples of each audio class. The MPEG-7 audio
features have shown to have performance comparable to MFCC in more general
sound classification tasks [Xiong03].

The MFCC averages the spectral energy distribution in each subband and thus may
produce similar average spectral characteristics for two different spectra. A Spec-
tral Contrast feature has been proposed to represent the relative distribution of the
spectral energy instead of the average spectral envelope [Jiang02]. The strength of
spectral peak and spectral valley, and their difference are considered separately in
each octave-scale subband. This feature roughly reflects the relative distribution
of the harmonic and non-harmonic components in the spectrum, since often the
harmonic components correspond to the strong spectral peaks and non-harmonic
components to the spectral valleys. In the experiments made by Jiang et al., the
Spectral Contrast feature achieved better performance than the MFCC in the mu-
sical genre recognition [Jiang02].

The wavelet transform can be used to provide simultaneously a good frequency and
time resolutions. With the transform, the signal is represented as a linear combina-
tion of the scaled and shifted versions of the wavelet function. A Daubechies Wavelet
Coefficient Histogram (DWCH) has been proposed to represent the local and global
information of the music signals simultaneously [Li03]. The set of subband signals
are produced by wavelet decomposition and a histogram of the wavelet coefficients
at each subband is constructed. The wavelet decomposition of the signal highly
resembles the octave-band decomposition of audio signal [Li00]. The histogram pro-
vides an approximation of the waveform variations at each subband. The average,
the variance, and the skewness of the histograms are used as features along with the
energy of each subband. The experiments showed that the DWCH improved the
recognition accuracy significantly compared to the feature set used to represent the
timbral texture, rhythmic content, and pitch content in [Tzanetakis02a].

In addition to the previously presented features, some characteristics of the spec-
trum can be represented with Spectral Centroid (used in [Tzanetakis02a, Burred03]),
Spectral Flux (used in [Tzanetakis02a, Burred03]), Spectral Roll-Off (used in
[Tzanetakis02a, Burred03]), Low Energy (used in [Tzanetakis02a, Burred03]), and
Zero Crossing Rate (used in [Tzanetakis02a, Xu03, Burred03]). Spectral Centroid
measures the brightness of the signal and is defined as the balancing point of the
magnitude spectrum. Spectral Fluz is used to represent the degree of change in the
spectral shape, and it is defined as the frame-to-frame magnitude spectral difference.
Spectral Roll-Off is defined as the frequency below that a certain amount (e.g. 85 %)
of the power spectrum resides, and especially percussive sounds and other transients
can be detected with this feature. Low Energy measures the amplitude distribution
of the signal, and it is defined as percentage of frames to have energy less than
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the average energy over the whole signal. Zero Crossing Rate (ZCR) measures the
number of time-domain zero crossings within a frame. In [Tzanetakis02a], low order
statistics (mean, variance, skewness, and kurtosis) are computed for these features
and for MFCC over a larger analysis segment (30 seconds).

Rhythm-related features

The rhythmic structure of music gives valuable information about the musical genre.
The complexity of the beat can be used to distinguish, for example, between straight
rock music and rhythmically more complex jazz music. Thus, besides just taking
into account the global timbre, the rhythm-related features have also been used in
musical genre recognition systems [Soltau98, Tzanetakis02a, Burred03, Xu03].

Tzanetakis et al. [Tzanetakis02a] proposed the concept of beat histogram, a curve
describing beat strength as a function of tempo values, to be used to gain informa-
tion about the complexity of the beat in the music. The regularity of the rhythm, the
relation of the main beat to the subbeats and the relative strength of subbeats to the
main beat, is used as one of the features in their musical genre recognition system.
The Discrete Wavelet Transform (DWT) is used to divide the signal into octave
bands and, for each band, full-wave rectification, low pass filtering, downsampling
and mean removal are performed in order to extract an envelope. The envelopes of
each band are summed up and the autocorrelation is calculated to capture the pe-
riodicities in the signal’s envelope. The dominant peaks in autocorrelation function
are accumulated over the whole audio signal into a beat histogram.

In [Burred03], the beat histogram is extracted with a method proposed in [Scheirer98].
The music signal between 200 Hz and 3200 Hz is divided into six subbands with a
filterbank. In each subband the envelope is extracted, a first-order difference func-
tion is calculated, and the signal is half-wave rectified. The periodic modulation
in each subband is examined with a filterbank of comb filter resonators in order to
produce an overall tempo estimate. The beat histogram is collected over time with
this analysis. The beat strength is captured by calculating mean, standard deviation
of the derivative, skewness, kurtosis, and entropy of the obtained beat histogram.
The high rhythmic regularity shows in the histogram with periodically spaced strong
peaks, which can be detected as clear peaks in the normalised autocorrelation of the
histogram.

In [Xu03], the beat spectrum is formed directly from the extracted spectrum-based
features. A similarity matrix is formed by calculating similarity with a distance
measure between all pairwise combinations of features. The final beat spectrum is
obtained using autocorrelation for this similarity matrix.

Soltau et al. proposed an architecture called Explicit Time Modelling with Neural
Networks (ETM-NN) to be used to extract information about the temporal structure
of a musical performance [Soltau98|. An autoassociative neural network is trained
for cepstral coefficients extracted from the music signal. The activation strength of
the hidden units in this neural network is used to determine the most significant
abstract musical events within each frame. The temporal structure of these events
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is represented with unigram-counts, bigram-counts, trigram-counts, event durations,
and statistics of event activation. A second neural network is trained to recognise
the musical genre based on the temporal pattern of the abstract events.

Pitch-related features

The pitch content of music can be used to characterise particular musical genres.
For example, jazz music tends to have more chord changes, classical music has a
large variability of harmonic properties and in rock music high-pitched notes are
mainly absent and they seldom exhibit a high degree of harmonic variation.

The pitch histogram was proposed by Tzanetakis et al. as a way of representing the
pitch content of music signals both in symbolic and audio form [Tzanetakis02a]. For
polyphonic audio they used a multipitch detection algorithm presented in [Tolonen00)]
to extract the pitch content. The multipitch detection algorithm is defined as fol-
lows. The signal is first decomposed into two frequency bands (below and above
1000 Hz) and the amplitude envelope is extracted for both bands. A summary au-
tocorrelation (SACF) is computed for these envelopes. Autocorrelation is enhanced
(ESACF) by subtracting integer multiples of the peak frequencies.

The three most dominant peaks (which correspond here to the pitches in the music
signal) of the ESACF are accumulated over the whole audio signal into a pitch
histogram. This so-called unfolded histogram is useful for determining the pitch
range. In addition, a folded pitch histogram is created, by mapping all notes to
a single octave. This yields a representation similar to Wakefield’s chromagram
[Wakefield99]. The folded histogram is used to describe the overall harmonic content
of the music. The following features are extracted from the unfolded and folded pitch
histograms:

e Period of maximum peak of the unfolded histogram, which corresponds to the
dominant octave range (e.g. flute pieces have higher octave range than bass
pieces).

e Period of maximum peak of the folded histogram, which corresponds to the
most common pitch class (all pitches existing in an octave relationships).

e Amplitude of maximum peak of the folded histogram, which corresponds to
the frequency of main pitch class occurrence.

e Interval between the two highest peaks of the folded histogram, which corre-
sponds to the main tonal interval relation, whether piece have simple (fifth or
fourth interval) or complex harmonic structure.

e Overall sum of the histogram, which measures the strength of the pitch detec-
tion.

Interestingly, there is only a small decrease in the recognition accuracy between the
use of real pitch information taken from the symbolic data (MIDI) and the use of
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multipitch detection for the audio synthesised directly from the same symbolic data
[Tzanetakis02b]. However, the genre recognition accuracy for audio signals based
on just the pitch content was still quite poor (23 %) [Tzanetakis02a].

2.3.3 Classification

Two different types of classification approaches have been used in the automatic
musical genre recognition systems. The most common approach is to classify each
frame separately, and to combine these classification results over an analysis seg-
ment in order to get the global classification result. The second approach is to also
take into account the temporal relationships between frames in the classifier. For
humans, order of frames is an important property. The recognition accuracy has
been observed to decrease from 85 % to 70 % when the order of frames was mixed
[Soltau97].

One of the simplest classifiers is the k-Nearest Neighbour Classifier (k-NN), used in
[Li03, Tzanetakis02a, Xu03]. The distance between the tested feature vector and
all the training vectors from different classes is measured. The classification is done
according to the k nearest training vectors. The Gaussian Mixture Model (GMM)
is used in [Pye00, Jiang02, Tzanetakis02a, Burred03, Li03, Xu03|. Based on the
available training data, the distributions of feature values in different musical genres
are modelled as a weighted sum of Gaussian density functions. This mixture is then
used to determine the probability of a test feature vector to belong to a particular
musical genre. The mathematical definitions and descriptions of the £-NN and the
GMM will be given in Chapter 5.

Tree-based Vector Quantization (TreeQ) is used in [Pye00]. Instead of modelling
the class densities, the Vector Quantizer models the discrimination function be-
tween classes defined by a set of labelled codebook vectors. A quantization tree
is formed to partition the feature space into regions with maximally different class
populations. The tree is used to form a histogram template for a musical genre and
the classification is done by matching template histograms of training data to the
histograms of the test data. The classification can also be done with a Feed-forward
neural network, as used in [Soltau98|. A neural network is trained with examples
from different classes so as to map the high-dimensional space of feature vectors onto
the different classes. The Linear Discriminant Analysis (LDA) finds a linear trans-
formation for the feature vectors that best discriminates them among classes. The
classification is done in this transformed feature space with some distance metric,
e.g., Euclidean distance as in [Li03].

In addition to the previous multi-class learning methods, a binary classification ap-
proach using the Support Vector Machine (SVM) is studied in [Li03, Xu03]. Feature
vectors are first non-linearly mapped into a new feature space and a hyperplane is
then searched in the new feature space to separate the data points of the classes with
a maximum margin. In [Li03], the SVM is extended into multi-class classification
with one-versus-the-rest, pairwise comparison, and multi-class objective functions.
In the one-versus-the-rest method, binary classifiers are trained to separate one class
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from rest of the classes. The multi-class classification is then carried out according
to the maximal output of these binary classifiers. In pairwise comparison, a clas-
sifier is trained for each possible pair of classes and the unknown observation is
assigned to the class getting the highest number of classification "votes” among all
the classifiers. In the multi-class objective-function method, the objective function
of a binary SVM is directly modified to allow the simultaneous computation of a
multi-class classifier. In [Xu03], the SVM is extended into multi-class classification
with a hierarchical classification approach.

The only approach to also take into account the temporal order of frames is the
Hidden Markov Model (HMM), used in [Soltau98, Casey02, Xu03]. The HMM
can be considered to consist of several GMMs and the probabilities describing the
transitions between them. The definition of the HMM will be given in Chapter 5.

Hierarchical classification

Most of the reviewed systems classify music from all the genres according to the same
genre independent feature set [Soltau98, Pye00, Casey02, Jiang02, Tzanetakis02a,
Li03]. However, it is clear that different genres have different classification criteria,
thus some features are more suitable than others in separating some genres from
others. For example, the beat strength is likely to perform better in discriminating
between classical and pop than between rock and pop music. A hierarchical clas-
sification scheme enables us to use different features for different genres. It is also
more likely to produce more acceptable misclassifications within higher-level genre.

In [Xu03], music is first classified into two metaclasses (pop/classical or rock/jazz)
according to the beat spectrum and LPC-derived cepstrum. After this the pop /clas-
sical music is further classified (into pop or classical) according to LPC-derived cep-
strum, spectrum power, and MFCCs. The rock/jazz music is classified (into rock or
jazz) according to ZCR and MFCCs.

Burred et al. compared the hierarchical classification scheme with direct classifica-
tion [Burred03]. In hierarchical classification, signals were first classified into speech,
music and background noise. Music was then classified with a three-level structure,
first classifying it into classical and non-classical music, and after that classifying it
into chamber or orchestral music, or into rock, electronic/pop, and jazz/blues. At
the third level, music was classified further, e.g. rock into hard rock or soft rock.
They extracted a wide selection of different features and used a feature selection
algorithm to select the best performing set of features for each particular subgenre
classification. As a result, they achieved very similar recognition accuracies for hi-
erarchical and direct classification schemes.
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2.4 Related work

2.4.1 Musical signal processing

Many ideas and solutions presented in music signal processing in general are also
relevant for the automatic musical genre recognition. Some of the most relevant
fields are presented in the following.

Music similarity

As more and more music is available in digital libraries, new query mechanisms to
find music from these libraries are becoming necessary. For instance, a user may
want to search the library for similar or almost similar music to the given piece
(Query-By-Example). Many dimensions of music are perceptually important for
characterising and for making judgements about the similarity, including tempo,
rhythm, melody, instrumentation, voice qualities, and musical genre.

Foote proposed in [Foote97] a music indexing system based on histograms of MFCC
features derived from discriminatively trained vector quantizer. In [Logan01], a
signature was formed for each piece based on the clustered spectral features. This
signature was then compared to find similar signatures.

Welsh et al. proposed a system capable of performing similarity queries in a large
digital library [Welsh99]. They used frequency histograms, tonal transitions, rela-
tive noise level, volume, and tempo as features. Rhythmic information was extracted
with the algorithm proposed in [Scheirer98] (described earlier). Similarity was de-
termined with the Euclidean distance between the feature vectors. The effectiveness
of the system was evaluated with musical genre queries. One hundred manually la-
belled albums from seven musical genres (classical, electronic, folk, indie, pop, rock,
and soul) were used in the evaluations. On average, they achieved quite poor query
accuracies (average performance being around 39 %).

Music segmentation

In music segmentation, parts of a music signal are discriminated based on pitch
changes [Raphael99], timbres (transients and steady parts) [Rossignol98|, instru-
ments [Herrera00], vocals [Berenzweig01], or musical structures (verse and chorus)
[Foote00]. In general, two different approaches can be observed in segmentation
systems. In the first one, features are extracted frame-by-frame and the segment
boundaries are detected by looking for abrupt changes in the feature trajectories.
In the other one, the feature trajectories are matched with a model (HMM) of each
possible type of segment to allow more intelligent segmentation [Aucouturier01].

Vocals and the singer’ voice are an important aspect of music for humans when
identifying and classifying it. Berenzweig et al. have proposed a detector to locate
the segments of music signal with vocals [Berenzweig01]. They used a traditional
HMM-based speech recognition system as a detector for speech-like sounds (vocals),
and achieved approximately 80 % accuracy at the frame level.
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Rhythm

Rhythmic content of music is an important factor when determining the musical
genre. Jazz music has usually a more complex rhythmic structure than e.g. rock
music. Therefore beat tracking and rhythmic pattern detection are very interesting
fields with respect to musical genre recognition.

Most humans do not have any difficulties to tap their foot in time with music.
However, this has proven to be a challenging problem for automatic systems, since it
requires a real understanding of the rhythm by finding the fine hierarchical structure
of the timing relationships in the music. This hierarchical structure has several
levels: tatum is the lowest metrical level, bar, measure, and beat are at the higher
level. The different levels of rhythmic measurements have been studied in [Dixon01,
Seppéanen01, Klapuri03].

Paulus et al. proposed a system to measure the similarity of two arbitrary rhythmic
patterns [Paulus02]. Based on a probabilistic musical meter estimation music signal
is first segmented into patterns. The fluctuation of loudness and brightness is then
modelled within the pattern and the dynamic time warping is used to align the
patterns. In the evaluations they achieved quite promising results.

2.4.2 Speech/music discrimination and general audio
classification

Obviously, a music information retrieval system cannot give usable results when
the input signal does not represent music. It does not make sense to recognise
musical genre for speech signal or to recognise speech in music. Therefore the ability
to distinguish between music and the speech is a valuable front-end for either of
the systems. It is also essential for generic sound-analysis systems. The front-end
discriminators pass the signals on to the specific back-end audio classification system,
which is designed to handle especially music or speech signals. In [Saunders96], a
good discrimination rate (98 %) between music and speech is achieved by simply
thresholding the average ZCR and energy features. In [Scheirer97], multiple features
and statistical pattern recognition approaches were carefully evaluated for the task.

Zhang et al. proposed a heuristic rule-based system for the real-time segmentation
of audio signals from TV programs and movies [Zhang01]. The segmentation is per-
formed based on the time-varying properties of simple features, including the energy
function, the average ZCR, the fundamental frequency and the spectral peak tracks.
In their experiments they achieved a good accuracy (above 90 %) for basic audio
categories, e.g., like pure speech, pure music, speech with music on the background,
and sound effects.

2.4.3 Speaker recognition and verification

Various algorithms used in speaker recognition are applicable to MIR-related tasks,
too. Speaker recognition and verification have a various security applications, where
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it is used to recognise the person or to determine whether the person belongs to a
list of approved people. The problem of speaker verification shares some issues with
instrument detection, discussed later on this thesis.

As an example, Reynolds et al. presented a robust text-independent speaker iden-
tification system [Reynolds95]. MFCCs were used to represent the spectral content
of speech and the speaker identity was modelled by representing general speaker
dependent spectral shapes with individual Gaussian components of a GMM. The
proposed framework is quite well operative in music classification as such.
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An appropriate database is needed to evaluate a classification system. Since there
are diverse types of music signals, the database has to be carefully designed. The
objective was to form a general-purpose music database to be used in different areas
of MIR. Altogether 505 musical pieces were collected to get a representative set of
pieces from different musical genres. Every piece in the database was thoroughly
annotated, and part of the annotated information remains unused in this thesis.
The database consists of the actual acoustic signals and their manually annotated
content in textual format.

3.1 Collecting the database

The aim was to collect a database that would adequately cover different musical
genres. To make sure that we take into account all major musical genres, a hierar-
chical categorisation system had to be established for musical genres. Seven primary
genres: classical, electronic/dance, hip hop, jazz/blues, rock/pop, soul/RnB/funk,
and world/folk (explained in detail in the section 3.4), were considered when col-
lecting pieces for the database. The relative amount of the pieces for each genre
were approximated based on what people nowadays listen to. Majority of the pieces
were collected during the year 2001 and during the summer of 2002 the database
was updated with some pieces.

Representative pieces have to be carefully selected due to the somewhat large vari-
ation within each genre. Some compromises had to be made in order to keep the
database as segmented as possible. Pieces clearly exploiting characteristic elements
from various musical genres at the same time, for instance heavy rock music played
with cellos, were mainly excluded. Appendix B lists all the pieces in the music
database.

3.2 Format of acoustic data

All the pieces were transferred directly from CDs in digital form and the Pulse-Code
Modulated (PCM) signals were stored with 44.1 kHz sampling rate and a 16 -bit
resolution. The pieces were converted into monophonic form by averaging the left
and the right channel into one channel. The audio files were stored along their
textual annotation files.
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InstrumentRep| = | vocal;guitar| @ 61 B 71 # text
label value start (s) end (s) comment
compulsory optional

Figure 3.1: Annotation file format.

3.3 Annotations

Pieces were annotated manually by a third party person, not working in the devel-
opment of the system, but having a good basic knowledge of music theory and music
in general.

3.3.1 File format

The annotation file format is identical to one used by Peltonen in [Peltonen01]. This
enabled the use of database access tools developed during that research. These tools
allowed easy searching from the database using different search criteria, e.g. musical
genre.

The annotation file consists of annotation fields. Each field represents a single feature
and occupies one line in the annotation file. The format of the field is presented in
Figure 3.1. Label represents the type of the annotated data and value is a numeric
or verbal description of the data. The time interval is an optional parameter used to
determine a time segment where the value is valid. The start and end points for the
interval are annotated in seconds with respect to the piece beginning. Absence of
this interval data denotes that value is valid for the entire audio file. A hash mark
is used to denote a comment at the beginning of each comment, and the text after
the hash mark will be ignored when making queries to the database.

3.3.2 Annotation fields

An example of an annotation file is presented in Figure 3.2. The following labels
were used in the annotations:

e Artist, the performer.

e Title, the title of the piece.

e Album, the name of the album from which the piece was taken.

e Genre, the musical genre. If the piece clearly belongs to two different higher-
level genres, label Genre2 can be used in addition. This was the case only
for one piece in the database. Genre was annotated hierarchically with three
levels. Every level adds the accuracy of the description of genre. Only the first
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Artist= Kool and the gang

Title= Funky stuff

Album= The best of

Genre= soul/rnb/funk; funk

Instruments= electric guitar, bass guitar, brass section, saxophones,
drums, male vocals

Drums= set; comp

Acoustic= both acoustic and electronic

Vocals= yes

Number of players= band

Key= major

Time signature= 4/4

Tempo= 100

Recording environment= studio

Recording year= 1973

Composer= Kool & the gang

Media= CD

Representative= sample @ 57-105

InstrumentRep= male vocals;drums,bass guitar,electric guitar @ 70-80

Length= 187

DrumsOn= sample @ 0 - 4.1375

DrumsOff= sample @ 4.1375 - 7.765

DrumsOn= sample @ 7.765 - 182.7181

Figure 3.2: Example of an annotation file.

level was required. (notation: first level genre; second level genre, third level
genre)

Instruments, a list of the instruments used, in the order of decreasing domi-
nance.

Drums, the type of drums used in the piece. (notation: type of drums; type
of playing. Possible values for the former: set, percussion only, orchestral and
for the latter: partial, comp)

Acoustic, the degree of acoustic instruments in the piece. (possible values:
strictly, mostly, both acoustic and electronic, electronic)

Vocals, the presence of vocals in the piece. (possible values: yes, none, speech)

Number of players, the estimate of the number of players described verbally.
(possible values: solo, duet, band, big band, choir, orchestra, orchestra and
choir, ensemble, symphonic orchestra)

Key, the key signature defines the diatonic scale used in piece. (possible
values: minor, major, modern).

Time signature, a predominant time signature. Describes how many and
what kind of notes there are per measure. (notation: the number of notes per
measure / what kind of note, possible values: e.g. 3/4, 4/4).
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e Tempo, an average tempo of the piece. If tempo clearly changes within the
piece, different tempo values were annotated for the corresponding intervals.

e Recording environment, the environment where the recording was done.
(possible values: studio, live)

¢ Recording year
e Composer, the composer of the piece.

e Media, media from which the piece was transferred to the database. Currently
all are from CDs.

¢ Representative, about an one-minute representative excerpt from the piece,
starting and ending points annotated in seconds.

e Instrument Representative, a ten-second excerpt within the representative
excerpt, which is as homogeneous as possible with regard to the instruments
involved. Instruments used within the excerpt were annotated. Instruments
that played the melody and the accompanying instruments are annotated sep-
arately in the order of decreasing dominance. (notation: melody instruments;
accompanying instruments @ interval)

e Length, the length of the whole piece in seconds rounded down to the nearest
integer number.

e DrumsOn and DrumsOff, intervals with and without drum instruments.

These fields have been annotated for all pieces with few exceptions. The instrument
representative excerpt was annotated for 98 % of the pieces and the time segments
with and without drums were annotated for 79 % of the pieces. There are also some
minor defects with other fields, because the structure of the annotation file was
changed at an early stage and some of the old annotations remained. About 6 % of
the pieces are lacking the proper “instruments”™field and “acoustic”field annotations.

Representative Excerpt

For the genre classification purposes, approximately one-minute interval within each
piece was manually annotated to represent it. Interval was annotated for all the
pieces in the database and was used to represent the piece in simulations.

Instrument Representative Excerpt

In addition to the representative excerpt, a section of exactly ten-seconds within
the representative part was annotated, which is homogeneous from the point of
view of instruments used. No big structural changes were allowed in music during
the chosen interval. Furthermore, the instruments used within the excerpt were
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annotated to give an exact view of the used instrumentation. Instruments used to
play the melody and the accompanying instruments were annotated separately in the
order of decreasing dominance. The interval was used in the instrument detection
simulations.

Segments with drum presence

“The drum presence” was defined to include the requirement that the drum is played
in a rhythmic role. However, some clear individual drum strokes were also tran-
scribed. These were excluded later on in order to get explicit evaluation data.
Presence of drums was decided based on following guidelines:

e Drum instrument is used to produce a rhythm pattern that repeats itself. For
example, cymbal or kettledrum can be used as a sort of an effect instrument,
in these cases it was not consider as a drum instrument.

e Drum pattern is repeated a few times within a five seconds.

A special care had to take with classical music. Kettledrum is used in many classical
pieces, but not always in a rhythmic role. Kettledrum has to play a clear repeating
pattern to be accepted as a drum instrument, not just to be used to emphasise a
certain part of the piece. In modern electronic dance music, the amplitude of a
drum track may increase gradually. In these cases, the boundary was chosen based
on when a human listener first perceived the presence of the drums.

3.4 Musical genre hierarchy

In order to make a proper genre hierarchy, we explored different hierarchical mu-
sic catalogues used in some of the Internet based record vendors (allmusic.com,
amazon.com, audiogalaxy.com, and mp3.com). First we mapped all the genres and
looked the relationships between them. As it was previously discussed in section 2.1,
musical genre is not a clear concept and genres have rather fuzzy boundaries. For
this reason, the objective was to have as few higher-level genres as possible in the
genre hierarchy and at the same time to make manual classification according to this
hierarchy as straightforward as possible. To achieve this, some of the closest and
clearly overlapping genres had to be combined. Minor genres were merged with the
closest broader genres. Eventually, we ended up with seven primary genres; classical,
electronic/dance, hip hop, jazz/blues, rock/pop, soul/RnB/funk and world/folk. We
had to make some compromises while forming the hierarchy. However, we consid-
ered that the classification, at least for humans, with these genre categories should
be rather unambiguous.

Genre hierarchy consists of three genre-levels. Under the seven primary genres
are two levels of subgenres. Each of these subgenre levels adds the accuracy of the
description. The two highest levels of the genre hierarchy are presented in Figure 3.3.
Appendix A presents the complete genre hierarchy.
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e classical (107)

— chamber music (24)
— classical general (20)
— Crossover

— film music

— general instrumental
— solo instruments (12)
— symphonic (10)

— vocal (6)

e electronic / dance (71)

— ambient (7)

— breakbeat /breaks/drum’n’bass -

(11)
— dance (9)

— electronica

— house (11)

— industrial (5)

— techno / trance (22)

e hip hop (37)
e jazz / blues (96)

— blues (32)
— jazz (62)

e rock / pop (121)

— alternative (1)

— country (12)

— easy listening (6)
— metal (12)

— pop (30)

— rock (55)

— rock-n-roll oldies

e soul / RnB / funk (56)

funk (13)

gospel (6)

RnB (15)

rhythm and blues (4)
soul (18)

e world / folk (17)

African

Asia

Caribbean

Celtic

ceremonial /chants
European

folk (8)

Latin American (7)
Mediterranean
Middle East
North American
Northern Europe
Oceania

old dance music
Scandinavian
South Pacific
World Pacific
World Beat
World Fusion
World Traditions

Figure 3.3: Genre hierarchy with first two of the levels used. The num-
bers in parentheses indicate the amount of pieces from par-
ticular genre in the music database.
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3.4.1 Descriptions of musical genres

In order to give some idea what is characteristic for the seven primary genre labels
used, a short description will be given about each of them. These descriptions are
superficial and do not even try to be exact. Descriptions are based on the discussions
presented in [Clarke89, Crowther95, Sadie01].

Classical music. In the strictly historical sense, classical music refers to music
written during the so-called Classical period around the years 1770-1830. However,
within this thesis, we will use the term in a much broader sense to include all the
music derived from the same educated European musical tradition. Classical music
is very often composed rather precisely for every instrument used. Any suitable
group of musicians can perform it; still only little nuances of interpretation are left
for performers. Classical music is usually performed by an orchestra, a large group
of musicians playing a variety of different instruments, or by a chamber group, a
smaller group of musicians.

Electronic / dance music. In the 1970’s, avant-garde electronic musical experi-
mentations evolved by bands like Kraftwerk and introduced the heavy use of elec-
tronic instruments into popular music. The development of synthesizers made it
possible for virtually everybody to create this new type of music. The heavy use
of all kinds of electronic instruments (e.g. synthesizers, drum machines, samplers,
computers, effects, and record players) is characteristic for this music. Most of the
electronic music is based on a strong rhythmic structure and a strong beat. Al-
though this genre is relatively new, it has been fragmented into an infinite number
of subgenres.

Hip hop music. The hip hop culture evolved from the inner-city Afro-American
communities in the late 1970’s and early 1980’s. Part of this culture is to rhyme and
rap over the beats and breaks played from records (disco, funk, jazz, rock, or soul) by
a disc jockey or specially made music with electronic instruments (drum machines,
samplers, and synthesizers). The way of performing rhythmic speech phrases over
the beat is characteristic for the hip hop music. The hip hop music uses influences
from many different musical genres, but still remaining the rhyming as a vital part
of the act.

Jazz / blues music. The blues is a traditional folk music that originated among
Afro-Americans at the beginning of the 20th century, mixing African musical tradi-
tions with European folk traditions. One of the defining characteristics of the blues
music is the use of blue notes. It is a scale resembling the minor scale with flatted
(lowered) notes on the third, the seventh and the fifth scale-degree, thus producing
a melancholy sound [Sadie01]. The structure of the pieces is often uniform. For
example, a form (twelve-bar) where three four-measure long phrases are repeated is
widely used in blues [Sadie01]. Jazz grew out of the blues during the beginning of
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the 20th century, and it emphasises improvisation. A propulsive rhythm, melodic
freedom, and improvisation solos are characteristic for jazz music.

Rock / pop music. This category is a bit problematic, since both rock and pop are
vague terms describing the majority of modern popular music and thus creating a too
wide and meaningless category. Nevertheless, to have a compact and unambiguous
set of higher-level genres these genre labels have to be used. Originally, rock music
evolved from country and blues music. A characteristic for rock music is the heavy
use of electric guitars and a strong beat. Nowadays rock music has fragmented
into subgenres, and many of these subgenres have further grown a genre of their
own. Characteristic for pop music are short and simple melodic pieces having some
catching tune to make them easily memorable.

Soul / RnB / funk music. Rhythm and blues (R&B) is, in its wide sense, an
“umbrella category” to hold majority of the “black music”, which grew out of the
urbanisation of the blues. Almost all R&B music made in the 1960’s and 1970’s
can be labelled as soul. Vocal intensity is characteristic for this music. Funk grew
out of the soul music by adding strong groove and influences from rock music on it.
Contemporary R&B, denoted here as RnB, is nowadays more and more close to hip
hop and pop music. However, there are still some characteristic features like smooth
vocals with a bouncy beat.

World / folk music. This category was introduced in order to have a complete set
of higher-level genres. It will not be used in the automatic genre classification tasks,
because of its miscellaneous nature. Virtually any music, which does not originate
from Western popular music traditions, can be labelled as world music. World
music use native instrumentation and traditional styles, at least to some extent.
Traditional Western music is called folk music.

3.5 Statistics of the database

Table 3.1 shows the number of pieces from different musical genres in the database.
There is a quite representative set of pieces for classical, rock/pop and jazz/blues.
Amount of hip hop pieces is rather small, but it is also a quite narrow genre in the
real life, too. A more detailed view of the amount of different genres in the database
was presented in Figure 3.3.

Table 3.2 shows the occurrence frequencies of certain instruments in the ten-second
“instrument representative” field of the annotations. These are shown separately for
each higher-level genre. In order to be accounted for the statistics, the instrument
has to be the most predominant or the second most predominant accompanying
instrument or one of the melody instruments. The instrument class “bowed” holds
all the instruments that are played with a bow, e.g. the violin and the cello. Due to
the different instrumentation in the musical genres these instruments do not occur
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Table 3.1: Amount of pieces from the different musical genres in the mu-
sic database.

Musical genre % #
classical 21 % 107
electronic / dance | 14 % 71
hip hop 7% 37
jazz /| blues 19 % 96
rock / pop 24 % 121
soul / tmb / funk | 11 % 56
world / folk 3% 17
Total (pieces) 505 pieces
Total (duration) | 1d:13h:22m:44s

Table 3.2: Amounts (number of pieces) of certain instruments annotated
into “instrument representative” field.

Musical genre bowed electric piano saxophone  vocal
guitar
classical 70 - 25 - 6
electronic / dance - 1 - 1 28
hip hop - 1 - 37
jazz [ blues 2 23 35 26 29
rock / pop 6 46 14 1 105
soul / rnb / funk 2 11 7 5 49
world / folk 6 - 4 2 7
Total (pieces) 86 90 86 35 261
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Table 3.3: Statistics of the drum presence evaluation database.

Musical genre % # | Drums absent Drums present
classical 27% 107 89% 11%
electronic / dance | 7% 27 18% 82%
hip hop 3% 12 5% 95%
jazz / blues 16% 64 10% 90%
rock / pop 29% 115 11% 89%
soul / tnb / funk | 11% 45 8% 92%
world / folk % 27 56% 44%
Total (pieces) 397 32% 68%

evenly among the musical genres. This had to be taken into consideration when
using the database for the evaluations.

Table 3.3 presents the annotated drum presence in the music database. The drums
were present only seldom in classical music. For the rest of the genres drums were
present most of the time, only exception being world /folk with equal amounts of
segments with and without drums. However, this kind of imbalance was expected,
since drums are a basic element in Western music.
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Musical genre is probably the most often used music descriptor. Distinguishing
between musical genres is typically a rather trivial task for humans. Humans can do
a coarse classification already within few hundred milliseconds (see Section 2.2). A
good real-world setting to observe this capability in action is to scan the radio dial.
We can quite easily detect the musical genre and make a decision what to listen
to. This chapter presents a listening experiment to determine the level of human
accuracy in recognising musical genres. The experiment results can be used as a
baseline for the performance evaluation of the developed automatic musical genre
recognition system.

4.1 Experiment design

The listening experiment has to be carefully designed in order to minimise the errors
and to be able to draw reasonable conclusions from the outcome of the experiment
[Levitin99).

4.1.1 Objectives and assumptions

The main goal of this experiment was to investigate the accuracy of human musical
genre recognition. A secondary goal was to study the relationship between the length
of a heard excerpt and the recognition accuracy. In Chapter 6, human abilities are
compared with the developed automatic musical genre recognition system. Overall
performance and classification confusions are compared in order to better understand
the differences between humans and the computational recognition system.

Since musical genre is an ambiguous concept, the number of genre categories had to
be limited. Only six higher-level genres were chosen for this experiment. These were
classical, electronic/dance, hip hop, jazz/blues, rock/pop, soul/RnB/funk. By using
as few genre categories as possible we tried to minimise the possibility of confusion
and ambiguity. Although all musical genres overlap each other to some extent, the
mentioned primary genres are much better segregated. A more detailed description
of genre hierarchy was presented in Section 3.4.

Some assumptions were made concerning the test subjects and the human perception
of musical genres. Human capability to recognise musical genres was considered rel-
atively independent of sex, age and educational background of the test subjects, thus
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we did not try to balance these out in our test population. Contrary to [Perrot99],
no special attempt was made to find differences between recognition accuracies for
segments with and without vocals.

4.1.2 Method

The experiment was a six-way forced-choice classification task. One sample was
presented at a time and classified alone. Although a few example samples from each
musical genre were presented in the familiarisation stage, the method primarily relied
on the subjects’ internal reference about the musical genres. The internal reference
is not constant over the time; it is constantly updated, even during the experiment
itself. However, the method is very suitable for a large number of stimuli required
to perform a reliable experiment with such a variable material as music.

Test subjects were evenly divided in two separate groups each including the same
number of stimuli and identical musical genres, but having separate sets of test
pieces. This allowed the use of a larger amount of samples in experiment while
keeping the total duration of the experiment tolerable.

4.1.3 Stimuli

Selecting test pieces and stimuli

Test pieces were chosen from the music database described in Chapter 3. For each
of the six genres, ten pieces were randomly selected leading to a total of 60 pieces
for both test groups. Special attention had to be paid to genres having a strong
lower-level hierarchy (e.g. jazz/blues) to ensure balanced groups and to have as
representative samples as possible. In these cases, a representative amount of pieces
was selected randomly from each subgenre. The amounts of test samples from
different subgenres within the primary categories are shown in Table 4.1.

Four excerpts with different durations (250 ms, 500 ms, 1500 ms, and 5000 ms) were
extracted from every piece selected. For every piece in the database, there is a rep-
resentative one-minute long interval, selected manually to represent the whole piece
as well as possible. These manually annotated segments were used while selecting
stimuli. Starting point of the stimulus was randomly selected within this segment
separately for each subject and duration. This procedure may also produce rather
silent or indistinct excerpts. However, these effects belong to the randomisation,
which ensures that the selection of the excerpts does not produce systematic errors.

Preprocessing of stimuli
The level of all samples was normalised, so that the level would not have an influence

to the classification decision. Amplitude-scaling was done by scaling the variance to
unity for the whole piece. Since we were also using rather short sample durations
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Table 4.1: The amounts of test samples from different subgenres within
the higher-level.

classical 10  jazz / blues 10
chamber music 2 blues 5
classical general 2 jazz (latin jazz, jazz fusion) 5
solo instruments 2
symphonic 2 rock / pop 10
vocal 2 rock (alternative) 3

country 2

electronic / dance 10 metal 2
ambient 2 pop (easy listening) 3
breakbeat /breaks/drum’n’bass 2
dance 2 soul / RnB / funk 10
house 2 funk 3
techno/trance 2 RnB 4

soul (rhythm & blues, gospel) 3

hip hop 10

1 ZOES \22|ms
i ) Sample duration (e.g. 250ms) 4 |

0
0ms 270 ms

Figure 4.1: Windowing of the stimuli.

(250 ms and 500 ms), we used windowing to avoid unwanted clicks and masking on
the sample start and end. The beginning and the end of a sample were smoothed
with a half-Hanning window as illustrated in Figure 4.1. An equal-length (40 ms)
Hanning window was used for each sample durations.

4.1.4 Equipment and facilities

The experiment was conducted in a listening room in order to minimise the inter-
ference of background noise. The subjects were seated in front of a projector screen
presenting the experiment interface. The subjects had also a full access to the genre
hierarchy (see Appendix A).

Subjects listened to the samples with headphones (Beyerdynamic DT931) ensuring
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that reverberation did not affect the experiment. Every subject could set the ampli-
fication at a comfortable listening level. Besides this, there was no other calibration
of the sound reproduction system.

4.1.5 Subjects

An ideal situation would have been to use some sort of music labelling professionals
as test subjects. However, it would have been practically impossible to gather a
representative set of such professionals, thus we recruited amateur listeners. Ten
test subjects were recruited for both test groups, totalling 20 test subjects. Since
we were using amateur listeners, we had to ensure that they knew musical genres
sufficiently to be able to reliably recognise them. In subject selection, subjects who
had some musical background were preferred. Furthermore, subjects who had been
exposed to the used music database were excluded from the experiment.

Every subject had to take a short questionnaire, which was intended to map the
knowledge about different musical genres. Subjects had to name a characteristic
feature, an adjective, or an artist to be representative for a particular genre. The
questionnaire form used is shown in Figure 4.2. If two or more of the genres were
clearly unknown to the subject, he or she was excluded from the experiment. Ex-
periment controller conducted the questionnaire and decided whether the subject
met the requirements.

4.2 Test procedure

Before the test itself, subject candidates had to pass the previously described selec-
tion procedure. The subjects selected were put through a two-stage procedure for
the experiment: a familiarisation stage and the main experiment.

4.2.1 Preparation

Before the experiment, the experiment controller explained the whole test procedure
to the subject. Every stage was explained in order to motivate subjects. A short
written paper was also provided, with the main points of the experiment explained
in both English and Finnish. The musical genre hierarchy used was explained and
shown to the subject (see Appendix A). Genre hierarchy was also available during
the experiment. This minimised errors in cases where the subject clearly knew the
right subgenre, but could not assign it on any of the six primary genres.

In addition, some background information was collected about the subjects. This
information was gathered to possibly be used to explain exceptionally good or bad
recognition abilities in the result analysis stage. A graphical user interface used to
collect the data is shown in Figure 4.3.

All the user interfaces were in English. This should not be a problem for non-native
speakers, since terms were pretty clear and well understandable. Nevertheless, if
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Figure 4.2: A questionnaire to map subject’s knowledge about different
musical genres.

this was found to be a problem, the experiment controller explained the terms to
the test subject.

4.2.2 Familiarisation stage

The familiarisation stage had two functions. Firstly, to train the subjects for the task
and to familiarise them with the test setup, procedure and user interface. Secondly,
to make sure that the subjects are at least somehow familiar with the musical genre
labels used. Familiarisation was also used to provide the subject some kind of
internal reference for the musical genres.

Familiarisation was done with the experiment controller and the correct musical
genre was shown after subjects’ own classification. From each of the musical genres,
two pieces were randomly selected for the familiarisation. These familiarisation
pieces were excluded from the actual experiment. The first six samples (one from
each genre) were 5000 ms long, and the next six samples were randomly either 250
ms or 500 ms long. This way the subject also got an idea of how short the samples
could be.

Amplification of the headphones was set to a comfortable listening level during the
familiarisation stage and was held fixed during the rest of the experiment. The
listening level was allowed to vary between subjects.
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Figure 4.3: Background information query.

4.2.3 Main experiment

Before the experiment, subjects were divided into two test groups. Subjects in each
of the test groups classified 240 samples (10 pieces x 6 genres x 4 durations). In
order to minimise the learning effect, subjects were allowed to listen to each test
sample only once, and contrary to the familiarisation stage, the correct musical
genre was not shown after the classification. Because the samples used were rather
short, the test subjects were allowed to trigger them by themselves. This way the
subjects could control the pace of the experiment and carefully listen to all the
samples. Since the subject had to press a button to play the sample, his attention
was distracted for a while. After the sample was triggered, there was a 500 ms delay
before it was actually played, so that the subject could focus all his or her attention
only on the sample. The subjects were encouraged to proceed at their own pace,
taking breaks whenever necessary. A typical experiment took about 50 minutes to
complete.

In order to reduce order-effects, the stimuli were presented in a random order, differ-
ent for each subject. However, it would have been confusing to mix up all four very
different length of stimuli used in the experiment. Therefore, stimuli of an equal
length were randomly collected into 20-stimulus blocks, and these blocks were then
presented in a random order.
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Figure 4.4: User interface of the main experiment.

4.2.4 User interface for data collection

Figure 4.4 shows the main user dialogue for the experiment. In order to minimise the
effect caused by the ordering of genre-selection buttons, the buttons were ordered
randomly for every test subject.

When the subject clicked the Play sample button, the current stimulus was played
after a 500 ms delay. After the music was completed, the subject clicked a genre
(radio button) as he or she felt suitable for the current stimulus. Clicking the
Next Sample button approved the genre selection. Duration of the next sample was
displayed, so that the subject could prepare him or herself for the shorter durations.
A graphical bar was used to indicate the progress of the experiment to the subject.

The classification task was divided into three stages:

e sample has not been played yet
e sample has been played, but the user has not selected a genre yet

e user has selected a genre and is ready to move to the next sample

In every stage, the actions of the users were guided by shadowing all the unnecessary
buttons.

4.3 Results

Results of the experiment for both the test groups and for different sample durations
are shown in Table 4.2. The random guess rate for this experiment would be 16.6 %.
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Table 4.2: The recognition accuracies for both the test groups. Overall
recognition accuracies obtained by combining performances of
both the test groups. Entries are expressed as mean recog-
nition rate (percentages) with 95 % confidence interval. The
mean performances are calculated over all sample durations.

Sample duration  Group 1 Group 2 Overall

250 ms d7ED 26E5 5716
500 ms 62£5 63£5 63+6
1500 ms 62£5 68£5 69+6
5000 ms 72+4 T7t4 7517

Mean performance  65+4 66+4 6615

Table 4.3: Confusion matrix for the genre recognition with 250 ms ex-
cerpts. Also the total number of responses for each of the
genres is presented. All entries are expressed as percentages.

Responded Class Electr HipH JazzB RockP SoulR

Presented

Classical 88 3 - 5 3 2
Electronic/Dance 3 49 5 10 15 19
Hip Hop 1 6 66 ) 13 10
Jazz /Blues 7 5 1 49 28 11
Rock/Pop 4 14 3 12 57 11
Soul/RnB/Funk 2 10 14 19 25 31
Total responded 17 14 15 17 23 14

Pooling across all subjects, the right musical genre was selected on 57 % of trials with
250 ms long samples and the performance gradually increased with longer sample
durations.

Table 4.3 shows a confusion matrix for the 250 ms excerpt stimuli, pooled across
all subjects. In the confusion matrix, the rows correspond to the actual genre and
the columns to the genre responded by subject. For example, the cell of row 1,
column 5 with value 3 means that 3 % of the classical music was wrongly classified
as rock/pop music. The percentages of correct classification for every genre lie in
the diagonal of the confusion matrix.

Especially with shorter excerpts, one of the problems was that within the piece there
are short intervals that could be interpreted out of the context into a different genre
than as a part of the piece. In some cases this may have caused clearly acceptable
confusions, but overall, the effect to the results is minimal. Table 4.4 shows the
confusion matrix for 5000 ms long stimuli. Much less confusions occur, as can be
seen. Some of the confusions are quite understandable, since in some cases musical
genres overlap each other, or, at least they are rather close to another. The most
distinct genre was classical, with very few false responses. Rock/pop got the most
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Table 4.4: Confusion matrix for the genre recognition with 5000 ms ex-
cerpts. Also the total number of responses for each of the
genres is presented. All entries are expressed as percentages.

Responded | ' Flectr HipH JazzB RockP SoulR

Presented

Classical 99 1 - - - 1
Electronic/Dance 3 70 2 4 11 12
Hip Hop - 3 82 1 8 7
Jazz/Blues 4 - 66 19 12
Rock/Pop 2 3 2 12 7 5
Soul/RnB/Funk - 4 7 12 26 52
Total responded 18 13 15 16 23 15
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Figure 4.5: Pooled recognition results for musical genres. Confidence
limits (95 %) are marked with whiskers.

false responses. The most ambiguous genres were soul/RnB/funk, rock/pop, and
jazz /blues.

Figure 4.5 shows the recognition accuracy with confidence limits for the individual
genres. For classical music, the recognition accuracy was excellent with all sample
lengths. Soul/RnB/funk was the hardest genre to recognise throughout the experi-
ment.
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Table 4.5: [ statistics for testing whether the individual test groups had
equal recognition accuracies.

Duration | F' | p value
250ms | 0.01 | 0.91
500 ms | 0.11 | 0.75

1500 ms | 0.21 | 0.65

5000 ms | 4.23 | 0.05

4.3.1 Analysis

A compact statistical analysis was performed for the experiment results. The main
question that arises after the presented experiment results is: are the results reliable
and do they give a genuine picture of human abilities to recognise musical genres.

A chi-squared test is used to determine whether the experiment results are due to
genuine difference, or whether it is just due to chance [Fisher70, pp.78-113]. For
the 250 ms test excerpts confusion matrix presented in Table 4.3, for example, we
got x2(6,6) = 1733, p < 0.001. Based on this we can say with a high degree of
certainty that the differences between the values in the confusion matrix are a true
reflection of a variation and not due to chance. The overall results and results for
the individual subjects were all strongly significant using this test.

One-way Analysis of Variance (ANOVA) is used to test the null-hypothesis that the
means of the independent variable among the tested data groups were equal, under
the assumption that sampled populations are normally distributed [Fisher70, pp.213-
249]. If the means of the tested data groups differ significantly, a null-hypothesis
is rejected, and we conclude that at least one of the groups was from a population
with a different mean. In order to perform the analysis, population variances have
to be assumed equal.

At first, we tested whether the test groups had equal recognition accuracies. If they
were in fact equal, it would imply that the recognition accuracies of the groups were
independent on the selection of the pieces used and the particular division of test
subjects into the groups. The null-hypothesis is defined as follows:

H,: Both of the two test groups had the same average performance.

Hypothesis testing is done individually for each excerpt-length. Test results are
presented in Table 4.5. For the lengths 250 ms and 500 ms one can accept the
null-hypothesis with some confidence. For the length 5000 ms, one has to reject the
null-hypothesis, since an observed F' statistic would occur by chance only once in
20 times if the means were truly equal. The different test pieces and subjects in
the groups showed in the results only with the longest sample length. Thus one can
conclude that the selection of the pieces or the different abilities of the test subjects
had some significance in this experiment.
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Table 4.6: Recognisability scores for the musical genres.

Musical genre 250 ms 500 ms 1500 ms 5000 ms | ranking
classical 43 46 48 47 1.
electronic / dance 26 32 35 37 3.
hip hop 35 38 40 42 2.
jazz / blues 25 28 30 34 4.
rock / pop 24 26 27 32 5.
soul / RnB / funk 17 19 24 27 6.

Next, we will study the differences in recognition accuracies caused by the length of
the sample. The null-hypothesis is defined as follows:

H,: Length of the presented test samples did not have significant
influence on the recognition accuracy.

Test results clearly show that the length of the sample had a significant effect on
the recognition accuracy (F' = 27.75, p = 3.1921e — 12).

Finally, it is tested whether the musical genre had an effect on the recognition rate
in the experiment. The null-hypothesis is defined as follows:

H,: Accuracy of musical genre recognition is equal regardless of the
presented musical genre.

Test results for each sample length show clearly that the musical genre had a signif-
icant effect on the recognition accuracy (Fasoms = 28.29, p = 0, Fsooms = 30.78, p =
0, Fis00ms = 36.05, p = 0, F5000ms = 28.89, p = 0).

In order to further investigate the differences in the recognition accuracies with
musical genres, a "recognisability” score was calculated for each of the genres. The
score is calculated as the number of trials in which the genre was correctly identified,
divided by the total number of trials in which the genre appeared as either a stimuli
or a response. Table 4.6 presents scores for each of the sample lengths. Based on
the scores, the ranking of the musical genres was the same regardless of the sample
length.

4.4 Discussion and conclusions

The genre recognition rate of humans was 57 % for 250 ms sample duration and
75 % for 5000 ms sample duration in the experiment. As the analysis showed,
the recognition accuracy depends on the length of the presented sample. Although
the shortest sample lengths used (250 ms and 500 ms) are very short, fairly good
recognition accuracy were achieved for them. This shows that humans can do rather
accurate musical genre recognition without long-term temporal features. Since 250

38



4 Listening experiment

ms and 500 ms are too short to represent any rhythmic aspects of the music, a
subject may have to recognise, for example, some of the instruments and make a
classification based on them. With the longer sample lengths, human can also use
rhythm information and other long-term aspects of music to recognise the musical
genre more reliably.

Different musical genres are recognised with different accuracies. Some genres are
more distinguishable than others, e.g. classical music proved to be highly distin-
guishable. In some cases, genres like rock/pop, hip hop, and soul/RnB/funk might
be rather confusing, as they often share common elements, like instrumentation.

Comparison between the experiment and the previous studies are hard to make,
since the genre selection used and the test stimuli differ. Nevertheless, one can
conclude that results presented here are essentially similar to those presented in
[Perrot99, Soltau97].

39



5 System description

This chapter presents the basic structure of the used pattern recognition system.
Signal classification is done based on two leading principles. Musical genre and
instrumentation is recognised based on the overall tone colour of signals. Features
and classifiers studied in our experiments will be presented in detail. In addition,
the presence of drum instruments in music is detected by measuring the periodicity
of stochastic energy at subbands.

5.1 General structure of pattern recognition system

An overall view of our system is presented in Figure 5.1. At the general block-
diagram level, all modern pattern recognition systems share the same basic structure.
The system consists of four parts: preprocessing, feature extraction, pattern learn-
ing, and classification. At the preprocessing stage, the input signal is normalised
before extracting acoustic features, which are used to characterise the signal. In
order to train the recognition system, we need to have a sufficient amount of train-
ing examples from each class to be recognised. In practice, this is usually achieved
by assigning 70% of the manually labelled evaluation data into training set and the
rest to the test set. In the pattern learning stage, a representative pattern will be
determined for the features of the actual class. This can be done with a model
that uses statistical information concerning the features in the training data. In the
classification stage, the test data is compared to previously calculated models and
classification is done by measuring the similarity between the test data and each
model, and assigning the unknown observation to the class whose model is most
similar to the observation.

5.2 Extraction of spectral features

It is difficult to determine what particular features allow us to distinguish between
musical genres. It is even more challenging to find a compact numerical representa-
tion for a segment of audio that would retain those distinguishing properties, and at
the same time lose the irrelevant information. The use of right features is essential
for the classification process. There are a wide variety of different features that
can be used to characterise audio signals. Features can be divided generally into
time-domain and frequency-domain (spectral) features.
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Figure 5.1: A block diagram of the system.

Many different features were preliminarily tested, but only a few of the most promis-
ing ones were used in the final experiments. Mel-Frequency Cepstral Coefficients
have been successfully used in many audio classification problems [Reynolds95,
Eronen03al, and they proved to be a good choice for our application, as well. An-
other feature, Band Energy Ratio was used in the extraction of the rhythm features.

Before the feature extraction, the time-domain signals are normalised to have zero
mean and unity variance. After that the audio signals are divided into 20 ms frames.
The frame blocking causes edge-effects (spectral leakage), which are minimised by
using a windowing function for the frame. This gives more weight to the samples
that are located at the centre of the window. Successive windows overlap each other
D ms.

5.2.1 Mel-frequency cepstral coefficients

Mel-Frequency Cepstral Coefficients (MFCC) is the most widely-used feature in
speech recognition [Rabiner93|. They give a good discriminative performance with
reasonable noise robustness. MFCC is a short-term spectrum-based feature, which
represents the amplitude spectrum in a compact form. Figure 5.2 shows the steps
of extracting the MFCC features. These steps are motivated by perceptual and
computational considerations.

The preprocessing step involves pre-emphasising the audio signal, dividing the signal
into frames and windowing it. Pre-emphasis is done using a first-order finite impulse
response (FIR) filter 1 — 0.9727! to increase the relative energy of high-frequency
spectrum. The aim of frame blocking is to segment the signal into statistically
stationary blocks. Hamming window is used to weight the pre-emphasised frames.
Next, the Discrete Fourier transform (DFT) is calculated for the frames. Since the
human auditory system does not perceive pitch linearly, a perceptually meaningful
frequency resolution is obtained by averaging the magnitude spectral components
over Mel-spaced bins. This is done by using a filterbank consisting of 40 triangular
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Figure 5.2: Overview of the MFCC feature extraction system.

filters occupying the band from 80 Hz to half the sampling rate, spaced uniformly
on the Mel-scale. An approximation between a frequency value f in Hertz and in
Mel is defined by [Houtsma95s]:

Mel (f) = 2595 log;, (1 + %) (5.1)

After the Mel-scale filterbank, logarithm is applied to the amplitude spectrum, since
the perceived loudness of a signal has been found to be approximately logarithmic.
The Mel-spectral components are highly correlated. This is an unwanted property
especially for features to be used with Gaussian mixture models, since it increases the
number of parameters required to model the features. The decorrelation of the Mel-
spectral components allows the use of diagonal covariance matrices in the subsequent
statistical modelling. The Mel-spectral components are decorrelated with the DCT,
which has been empirically found to approximate the Karhunen-Loeve transform, or,
equivalently, the Principal Component Analysis in case of music signals [Logan00].
The DCT is calculated by

et (i) = f:(logsj)-cos (WMZ (j _ %)) G=12.. N, (52

Jj=1

where ¢,,¢ (1) is the 7" MFCC, M is the total number (40) of channels in filterbank,
S; is the magnitude response of the j filterbank channel, and N is the total number
of the coefficients. For each frame, 17 cepstral coefficients are obtained using this
transform and the first coefficient is discarded, as it is a function of the channel
gain. The final number of cepstral coefficients is 16, which was found in preliminary
evaluations to give sufficient representation of the amplitude spectrum.

Transitions in music carry relevant information and consecutive feature vectors cor-
relate, thus it is important to consider time domain dynamics in feature representa-
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tion. In addition to the static coefficients, their differentials are also estimated by
using a linear regression over consecutive cepstral coefficients. The first-order time
derivatives are approximated with a three-point first-order polynomial fit as follows

S keConer (1 u + k)
Sy K2 ’

where ¢e (i,u) denotes the it cepstral coefficient in time frame u [Rabiner93, pp.
116-117].

Acpe (1,u) =

(5.3)

Many authors have used MFCCs to model music simply because they have been
so successful for speech recognition. Logan examined how some of the assumptions
made merely based on speech hold with music [Logan00]. Like speech, music is non-
stationary and phase-independent, so frame-based analysis and amplitude spectrum
are also justified for music. Furthermore, the perception of loudness is still logarith-
mic with music. Suitability of Mel-scaling was tested by comparing the performance
of linear and Mel-scaled cepstral features in speech/music discrimination. They
found the Mel-scaling to at least not be harmful for the discrimination. Usefulness
of DCT to approximate the Karhunen-Loeve transform for music was proven by
observing that the eigenvectors of Karhunen-Loeve were also “cosine-like” for music.

5.2.2 Band Energy Ratio

Band energy ratio (BER) is defined as the ratio of the energy at a certain frequency
band to the total energy. Thus the BER for the i** subband in time frame w is:

Znes,- | X (1) |2
Sl X (n)f?

where X, is the DFT of the time domain signal within the frame u, M is the index
for the highest frequency sample (half of the DET order), and S; is the set of Fourier
transform coefficients belonging to the i*" subband [Li01]. The Mel-scale filterbank
is also applied here to obtain a perceptually meaningful frequency resolution.

Fpgr (i,u) = ; (5.4)

5.3 Rhythm feature extraction

The features described above are used to represent a coarse spectral shape of the
music signal. Besides the spectral shape, the rhythm is also an important property
of the music. We present an approach to detect the presence of drum instruments
in music by measuring the signal’s long-term periodicity. This approach has been
previously presented in [Heittola02].

The aim was to develop a drum detection system, which would be as generic as pos-
sible. The problem of drum detection in music is more difficult than what it seems at
a first glance. For a major part of techno or rock/pop music, for example, detection
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is more or less trivial. However, detection systems designed for these musical genres
do not generalise to other genres. Music contains a lot of cases that are much more
ambiguous. Drums go easily undetected in jazz/big band music, where only hihat
or cymbals are softly played at the background. On the other hand, erroneous de-
tections may pop up for pieces with acoustic steel-stringed guitar, pizzicato strings,
cembalo, or staccato piano accompaniment, to mention some examples.

Earlier work in the area of the automatic analysis of musical rhythms has mostly
concentrated on metrical analysis [Scheirer98]. Most of the work in this field is
done with MIDI data, however there are a few exceptions. Alghoniemy et al. used
a narrowband filter at low frequencies to detect periodicities in polyphonic music
[Alghoniemy99]. Tzanetakis et al. used the Discrete Wavelet Transform to decom-
pose the signal into a number of bands and the autocorrelation function to detect the
various periodicities of the signal’s envelope [TzanetakisO1]. They used this struc-
ture to extract rhythm-related features for musical genre classification. Soltau et
al. used Neural Networks to represent temporal structures and variations in musical
signals [Soltau98].

5.3.1 Preprocessing with sinusoidal modelling

In Western music, drum instruments typically have a clear stochastic noise compo-
nent. The spectral energy distribution of the noise component varies, being wide
for the snare drum, and concentrated to high frequencies for cymbal sounds, for
example. In addition to the stochastic component, some drums have strong har-
monic vibration modes, and they have to be tuned. In the case of tom toms, for
example, approximately half of the spectral energy is harmonic. Nevertheless, these
sounds are still recognisable based on the stochastic component only. While most
other musical instruments produce chiefly harmonic energy, an attempt was made
to separate the stochastic and harmonic signal components from each other.

A sinusoids-plus-noise spectrum model was used to extract the stochastic parts of
acoustic musical signals. The model, described in [Serrad7], estimates the harmonic
parts of the signal and subtracts them in time domain to obtain a noise residual.
Although some harmonic components are not detected and beginning transients of
other instruments leak through, in general the residual signal has significantly better
“drums-to-other” ratio than the input signal.

5.3.2 Periodicity detection

Periodicity is characteristic for musical rhythms. Drum events typically form a pat-
tern which is repeated and varied over time. As a consequence, the time-varying
power spectrum of the signal shows clear correlation with a time shift equal to the
pattern length in the drum track. We propose that the presence of drums can be
detected by measuring this correlation in musical signals. This relies on the assump-
tion that periodicity of stochastic signal components is a universal characteristic of
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musical signals with drums. In order to alleviate the interference of other musi-
cal instruments, periodicity measurement is performed in the residual signal after
preprocessing with a sinusoidal model.

Feature stream

A signal model was employed which discards the fine structure of signals, but pre-
serves their rough spectral energy distribution. BER was used as the feature. Fea-
ture vectors are extracted from the preprocessed signal. Features were extracted in
10 ms analysis windows (Hanning windowing) and with 50% overlap. Short window
length was preferred to achieve a better time resolution in the autocorrelation cal-
culations later on. Using 16 frequency bands in BER ensured a sufficient frequency
resolution. The obtained feature vectors form a feature stream Fpgg (i,u), which is
subjected to autocorrelation function calculations.

Summary autocorrelation function

At each frequency band, an autocorrelation function (ACF) is calculated over the
BER values within a sliding analysis window. A three-second analysis window was
chosen to capture a few patterns of even the slowest rhythms. Autocorrelation
function of a U-length excerpt of Fgg (i,u) at band 7 is given by:

U-1-1

Z FBER(i,u)'FBER(i,U+T) 3 (55)

u=0

1

r\T) = —=

(M =7

where 7 is the lag, and Fpgg (i,u) is the calculated BER value at band ¢ in frame

u. Peaks in the autocorrelation function correspond to the delays in which the
time-domain signal shows high correlation with itself.

Despite the preprocessing, other instruments also cause peaks to the bandwise auto-
correlation functions. Fortunately, however, the spectrum of the other instruments
tends to concentrate to the mid-bands, whereas drums are more prominent at the
low or high frequencies (there are exceptions from this rule, e.g. the violin or the
snare drum). Based on this observation, we will weight bands differently before
forming the summary autocorrelation function (SACF). Autocorrelation functions
are weighted and then summed up to form the SACF

s (1) = Z Wi -1 (1) . (5.6)

This overall structure bears a close resemblance to the mechanisms of human pitch
perception, as modelled in [Meddis91]. A major difference here is that processing
is done for subband amplitude envelopes instead of the signal fine structure. The
SACF is then mean-normalised to get real peaks step out better from the SACF.
Mean normalisation was done with the following equation [Cheveigné02]:
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Figure 5.3: System overview.

S0 =1 (5.7)
S(r) = %zs;(:s<j> ' '

Overview of the whole system is shown in Figure 5.3.

Detection

Since a quite short analysis frame (10 ms) was used in extracting the feature stream,
the lowest frequency components cause slight framing artefacts. These appear as
a low-amplitude and high-frequency ripple in the SACF, which is easily removed
using moving averaging. Further, a long-term trend caused by differences in signal
levels within the ACF analysis window will be detrended from SACEF using high pass
filtering. Thus obtained SACFs for different types of music are shown in Figure 5.4.

As can be seen in Figure 5.4, periodic drum events also produce a periodic SACF.
In order to robustly detect this, SACF has to be enhanced in a manner illustrated
in Figure 5.5. The original SACF curve is time-scaled by a factor of two and three
and these two stretched curves are added to the original, resulting in the enhanced
summary autocorrelation function (ESACF). Thus peaks at integer multiples of
fundamental tempo are used to enhance the peaks of a slower tempo. If the original
SACF is periodic in nature, this technique produces clearer peaks. Idea for this
technique has been adopted from [Tolonen00], where subharmonic cancellation was
done by subtracting stretched curves from the original one.

The region of interest in the ESACF is determined by reasonable tempo limits. Lower
limit was fixed to lag of 1.7 seconds, which corresponds to the tempo of 35 beats
per minute. The higher limit was fixed to 120 beats per minute. Whereas the upper
limit may seem too tight, it should be noted that due to the enhancement procedure,
these limits actually correspond to 35 and 360 beats per minute in the original SACF.
This wide tempo range is essential, since certain drum instruments (e.g. hihat) are
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Figure 5.5: Enhancing the summary autocorrelation function.

typically played at an integer multiple of the tempo. Final detection is carried out
by measuring the absolute maximum value within the given tempo limits. Maximum
value distributions for segments with and without drums are presented in Figure 5.6.
Based on these distributions a threshold value for maximum value within periodicity
limits was defined and detection was done according to this threshold value. The
threshold value was chosen to produce equal error-probability for segments with and
without drums. Distributions overlap to some extent, but nevertheless enable robust
classification.
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Figure 5.6: Unit area normalised feature value distributions for music
with and without drums, as indicated in the legend.

5.4 Classification

The next stage after feature extraction is to assign each object to a specific category
based on features extracted. There are many different classification techniques to
choose from. Two types of classifiers are described in the following: the (distance-
based) k-Nearest Neighbour classifier and the (probabilistic) hidden Markov models.

5.4.1 K-Nearest Neighbour classifier

In this classification approach, a data vector to be classified is compared to training
data vectors from different classes and classification is performed according to dis-
tance to the k£ nearest neighbouring data points. In this thesis, Mahalanobis distance
is used in determining the nearest neighbours. The distance between the vectors x
to be classified and the training vectors y is measured by:

D=(x-y) C"(x~y) (5.8)

where C is the covariance matrix of the training data. The classification is done
by picking the k& points nearest to the current test point, and the class most often
picked is chosen as classification result [Cover67]. It is challenging to find the best
value for k. The neighbours should be close to the test data point x to get accurate
estimate, but still the number of neighbours should be large enough to get a reliable
estimate for a posteriori probability of the data point x belonging to the class wj,
ie. P(w;|x).

The implementation of k-NN classifier is straightforward. The computational load
is high with a large set of training data, since all the training data is stored and a
distance between the every test point and all the training data is calculated.

5.4.2 Hidden Markov Models

The distance-based k-NN classifier takes into account only the average of feature
distributions. The hidden Markov model (HMM) is a widely used method of statis-
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tical modelling, which also takes into account the shapes of the feature distributions.
The parameters for the class distributions are estimated based on the training data.
For each individual class, a model is trained independently and by maximising the
posterior probability the recognition accuracy is also assumed to be maximised. For
the tested observation sequence O = (01, 09, . ..,07), the HMM parameters are used
to calculate the a posteriori probabilities P (w; | O) for each class, and the class cor-
responding to the model with highest probability is chosen. This principle is also
known as Bayes’s rule.

An HMM is a finite state machine, where a series of states represents the target to
be modelled. Each state is associated with a probability distribution and transitions
between the states are determined by a set of transition probabilities. Each state also
has an output probability distribution that determines the likelihood of observing
certain feature values in certain states. Only the outcome is visible to the observer,
not the state that generated the observation, i.e. states are “hidden”. HMMs provide
a good parametric model for time-varying audio signals. The output distribution can
be matched with the distributions of target feature vectors by varying the parameters
of an HMM.

In contemporary speech recognition, HMMs are the dominant tool to model speech
as acoustic units (a phone, a syllable, a word, a sentence, or an entire paragraph)
[Rabiner93, pp. 435-481]. In recent years, HMMs have also been increasingly used
in other audio content analysis applications [Aucouturier01, Casey02, Eronen03a.

First, we review the theory of Markov Models, and then extend them to HMM.
Further, we will take a closer look at two fundamental problems for HMM design: the
model parameter estimation, and the evaluation of the probability (classification).
Two training methods are presented: conventional maximume-likelihood estimation
using the Baum-Welch algorithm, and discriminative training.

Markov Models

A finite Markov model or a Markov process is defined as a random process where
the probability of transitions to a next state depends only on the current state.
Since we are dealing with finite models, the states of the process can be enumer-
ated as {1,2,... N} and each state ¢ has a probability distribution for each time ¢,
denoted by P (g;). Further, if we know the state of the process at time ¢, we know
exactly the probabilities of the states for time t 4+ 1, i.e. P(q; | qt—1, Gt—2,qt—3,--.) =
P (g | gi—1). If we assume that these conditional probabilities are time-invariant, we
have P (¢ = j | ¢¢—1 = i) = a;;, where 1 < i,j7 < N. These probabilities a;; can be
presented as an N x N state transition probability matrix,

P(l | 1) P(2|1) P(N|1) air Q2 -+ Q1N
A= P<1:‘2) P(21]2) P(N|2) _ @:21 22 GQ:N . (5.9)
P(1|N) P@2|N) - P(N|N) a1 anz o anw
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Figure 5.7: Representing state transition matrix as graph. Nodes rep-
resent the states and weighted edges indicate the transition
probabilities. Two model topologies are presented: left-to-
right and fully-connected (i.e. ergodic HMM), the dotted
transitions have zero-probability in the left-right model.

The matrix A determines the allowable transitions within a model. A zero proba-
bility disables the transition. Finite-state time-invariant Markov processes can also
be conveniently represented with graph as shown in Figure 5.7. Two different model
topologies, fully-connected and left-right, are depicted in the figure.

Hidden Markov Models

A finite-state hidden Markov model is similar to Markov model, but the states
which produce the outputs are not observable, i.e. the state information is hidden.
The HMM can be completely defined with the initial state probability distribution
I1, state transition probabilities A, and output distributions of the states B. The
initial state probability distribution defines the probability of being in state i at
the beginning of the process, m; = P (¢1 =), [l = [my,...,m,...7x]. Outputs of
the process, the observations, are the outputs of the states. The probability of the
observation x in the state j is denoted by P (o, = x | ¢; = j) = b; (x). These output
distributions can be modelled with multinormal distributions defined by the mean
vector and covariance matrix. The parameters of the state distributions for all the
states are denoted by B. [Rabiner93, pp. 329-330]

In this thesis, a mixture of multivariate Gaussian density functions is used in mod-
elling the state-conditional densities. By means of multiple Gaussians, one can
improve the modelling accuracy provided that there is enough training data avail-
able to estimate the mixture parameters. A multivariate Gaussian density function
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is defined as

1 Tyl
N (o0t Bn) = e MOt Bort), - 10)
7T m

with mean vector p,, and diagonal covariance matrix 3,,. The notation | | denotes
matrix determinant. Arbitrarily shaped densities can be approximated with a linear
combination of Gaussian basis functions (see Figure 5.8).

With the mixture distributions, the probability that the observation vector x has
come from state j is denoted by

M
b; (x) = Z w;mN (ot, B Ej7m) , (5.11)
m=1

where M is the total number of Gaussian densities in state j, w,,’s are positive
mixture weights which sum to unity, x is an n-dimensional observation vector, and
N (x, K Ej,m) is a multinormal distribution [Rabiner93, p. 350].

A single-state HMM where output distributions are modelled with Gaussian densities
is also called a Gaussian Mixture Model (GMM). GMMs have been successfully used
for a variety of audio classification tasks such as speaker recognition [Reynolds95]
and musical genre recognition [Tzanetakis02a).

HMM Parameter Estimation

The estimation of the HMM parameters for the classes to be modelled is a challenging
task. Based on training data, the HMM parameters are estimated according to some
criterion. However, there is no universally optimum solution for this optimisation
problem. An iterative training procedure to find a local maximum of the Maximum
Likelihood (ML) objective function, known as the Baum-Welch re-estimation algo-
rithm, is widely used, and it will generally find a good set of parameters. In ML
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estimation, a set of model parameters which maximises the likelihood of the HMM
given the training data is found. [Rabiner93, p. 342]

First, we have to make a rough guess about parameters of an HMM, and based on
these initial parameters more accurate parameters can be found by applying the
Baum-Welch re-estimation algorithm. The re-estimation procedure is sensitive to
the selection of initial parameters. The model topology is specified by an initial
transition matrix, where the disabled transitions are assigned to zero. In this thesis,
only fully-connected and left-to-right topologies are evaluated (see Figure 5.7). The
state means and variances can be initialised by clustering the training data into as
many clusters as there are states in the model with the K-means clustering algorithm,
and estimating the initial parameters from these clusters. [Rabiner93, pp. 370, 382-
384]

The basic idea behind the Baum-Welch algorithm (also known as Forward-Backward
algorithm) is to iteratively re-estimate the parameters of a model, and to obtain a
new model with a better set of parameters A which satisfies the following criterion
for the observation sequence O = (01,09, ...,07):

P(O|X)>P(O]N), (5.12)

where the given parameters are A = (II, A, u;, 3;). By setting A = X at the end of
every iteration and re-estimating a better parameter set, the probability of P (O | \)
can be improved until some threshold is reached. The re-estimation procedure is
guaranteed to find in a local optimum.

To be able to evaluate the probability P (O | A), we need to define the forward and
the backward probability, «; (i) and [ (i), respectively. In order to calculate the
probability P (O | A), the probability of each possible state sequence which could
produce the desired output has to be summed as follows:

P(O[A) qul 01) P (g2 | q1) bg, (02) X -+ X P(qr | gr-1) by (07),  (5.13)

where q = (¢1, ¢2, - - ., gr) denotes the state sequence, and b,, (01) is the probability
that output oy is observed in state ¢;. This sum would be practically impossible
to calculate, since there are N7 different sequences to be summed. A fast, but
equally accurate, recursive algorithm can be used for the probability evaluation.
The probabilities of partial observation sequences to end in specific state ¢, the
forward probability oy (i) for parameters A, is denoted by

a; (i) = P(01,09,...,0,, ¢ =1 | A). (5.14)
The HMM produces the output sequence (01,09, . .., 0411) and ends in state ¢ exactly
when it first produces the sequence (01,09, ...,0;) ending in any state, and then

moves into state ¢ and outputs o;.;. This joint probability of having the partial
observation sequence ending in the state i at time ¢ can be efficiently calculated by
the following forward procedure:
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1. Initialisation
aq (]) = ﬂ-jbj (01), 1 S ] S N . (515)

2. Induction
2<t<T
Ot [ E (o773 1 CL]Z] s 1 EZ 2 N (516)

3. Termination

PO ZaT (5.17)

The main idea of this recursion is that the probability of being in state ¢ at time
t while observing o; can be obtained by summing the forward probabilities of all
possible preceding states j weighted by the transition probability a; and multiplying
with b; (o). [Rabiner93, pp. 335-337]

We also have to define the backward probability. The backward probability [, (i) is
the probability of generating the partial observation sequence from time ¢ to time
T. This can be derived in a fashion similar to the forward probability [Rabiner93,
p. 337):

1. Initialisation
Br(i) = 1, 1<i<N. (5.18)

2. Induction
Be (i) =Y aiby (0141) Bra (7)., (5.19)

J=1

wheret=1,2,.... Nandt=T—-1,T—-2,...,1.
3. Termination

PO Zﬁl (5.20)

The joint probability of generating the observation sequence and ending in state ¢
at time ¢ is the product of the forward and backward probabilities, o, (i) ¢ (7). The
probability P (O | A) is obtained simply by summing all the forward and backward
products:

P(O| ) Zat (5.21)

Before forming the re-estimation formulas of the Baum-Welch algorithm, we define
& (4,7) to be the probability of the process being in state i at time ¢t and in state j
at time ¢t + 1:

& (i>j) =P (Qt =10, q1 =] ‘ O, )\) . (5'22>
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With the definition of the forward-backward procedure this can be expressed in the
form [Rabiner93, p. 342]:

P(Qt:i7Qt+1:jaO|>‘)
PO

ay (1) ai;b; (0441) Bita ()
P(O[A)

o (1) aizbj (0441) By (4) .
ZZat (4) aijb; (0441) B (J)

i=1j=1

gt (Zvj) =

(5.23)

The probability of being in the m* mixture component of the i*" state at time ¢ can
be expressed as [Rabiner93, p. 352]:

Qy <Z> Bt (Z) wi,mN (0137 Him» Z:'L,m)

N M
Zat (Z) ﬁt (Z) ZwLmN (0t7 /J’i,m7 El,Tn)
i=1 m=1

For the m!* mixture component of the *" state in an HMM, the re-estimation
equations become as follows [Rabiner93, pp. 343, 351-352]:

T-1,. ;. .
@ = T_th=1M& (i, ) (5.25)
=1 Zm:1 Yt (Z, m)
T .
Cim = th:ﬁt G, m') (5.26)
D it Dt Ve (i, m)
T .
ﬁ@m _ Zt=1 ’yt (27 m) Oy (527)

Zle Vi (i7 m)
ii,m _ Z;,r:l Ve (4, m) - c(rOt - Hzm) (Ot - lh‘,m)T. (5.28)
Zt:l Tt (27 m)

Discriminative training algorithm

Musical signals are highly varying material, thus most likely the acoustic models
used are not able to sufficiently model the observation statistics. It is very unlikely
that a single HMM could capture all the acoustic variation in classical or jazz music,
for example. Moreover, our training database is still rather small and does not
suffice to reliably estimate the parameters for complex models with high amounts
of component densities.
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However, in classification tasks the class-conditional densities do not even have to be
accurately modelled, efficient modelling of class boundaries is sufficient [Bilmes02].
Models can be trained to focus on the differences between classes using discriminative
training of model parameters instead of conventional ML training. The aim of
discriminative training methods, such as the maximum mutual information (MMI),
is maximising the ability to distinguish between the observation sequences generated
by the model of the correct class and those generated by models of other classes
[Rabiner93, pp. 363-364]. This differs from the ML criterion where the aim is to
maximise the likelihood of the data given the model for each class separately, see
Eq. 5.12.

Different discriminative algorithms have been proposed in the literature. In this the-
sis, we are using the algorithm recently proposed by Ben-Yishai et al. [Ben-Yishai].
It is based on an approximation of the MMI criterion, and one of its benefits is a
straightforward implementation. The MMI objective function is given as

R

M(©)=) {10g () p (O | 1) ~log ) p(k)p(O"| /f)} )

r=1

where © denotes model parameters for all classes, O" denotes the sequence of feature
vectors extracted from recording r and [" denotes an associated class labels for
it, p(I") denotes the prior probability for the associated class labels, and p (k) for
class k. There exists no simple optimisation method for this problem, although
an approximation can be used. The approximated maximum mutual information
(AMMI) criterion was defined in [Ben-Yishai| as

J(©) =7 { > loglp(k)p (0" [K)] —n Y log[p(k)p(O" | k‘)]} o (5:29)

reAg reBy

where A;, is the set of indices of training recordings that are from class k, and By, is
the set of indices of training recordings assigned to class k£ by a maximum posteriori
classification. The “discrimination rate” is controlled with the parameter 0 < n < 1.
Optimisation of Eq. 5.29 can be done for each class separately. Thus, we maximise
the objective functions:

Ji(©) =) logp (0" [ k) —n Y logp(O" | k) (5.30)

reAg reBy,
for all the classes 1 < k < K. This means that the parameter set of each class can
be estimated separately, thus leading to a straightforward implementation.

For the general case of an HMM parameter v, the re-estimation procedure with the
ML estimation (Egs. 5.25 to 5.28) takes the form

7oy = V)
UmrL — G(V)’ (531)
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where N (v) and G (v) are accumulators that are computed according to the set
Ag. Correspondingly, the re-estimation procedure of the algorithm presented in
[Ben-Yishai] is

s = N (v) —nNp (v)
TG w) —aGo (V)

(5.32)

where Np (v) and Gp (v) are the discriminative accumulators computed according
to the set By, obtained by recognition on the training set. The recognition is done
only at the first iteration, after which the set Bj, stays fixed.

Based on the AMMI criterion, the following re-estimation equations for HMM pa-
rameters can be obtained [Ben-Yishail:

S Prea, et & (5) = n3,ep, Sty & (i) (5.33)

S e et Somet Ve () =03 g, S Sy e (i)

Gim = ZreAk Zt 1 Ve \? ( ) n ZrEBk Ztrl Ve (Z m) (5‘34)

Sreny o omy Y (im) =0 S e S S e (6,m)

i, _ ZreAk ZtT;1 Tt (i? m) Ot —1 ZreBk Zt 1 e\t ( )Ot (5 35)
o ZreAk 2221 Ve (i,m) — 1 ZreBk Zt:l Ve (i, m)

; . _ N2
E' _ EreAk Ethl Tt (7’7 m) (Ot B l'l'%m) -1 ZTGBk Et 1 Yt ( ) (Ot B “’z,m)
7 ZreAk 2311 Ye (i,m) — 1 ZreBk Zt:l Ye (i, m)

(5.36)

where & (7, j) is the probability of being in state i at time ¢ and in state j at time
t + 1 (defined in Eq. 5.23), and ~; (,m) is the probability of being in m mixture
component of the state i at time ¢ (defined in Eq. 5.24).

This discriminative re-estimation can be iterated. Typically five iterations are
enough, since the improvement in recognition accuracy is small beyond that. In
many cases, first iteration is enough and typically gives the greatest improvement.
The following iterations still increase the AMMI objective function and increase the
accuracy at least in the training set. However, continuing iterations too long may
cause the algorithm to overfit the parameters to the training data, leading to poor
generalisation over the training data.
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Classification with HMMs

Each class k = {1,2,..., K} is represented by an HMM with model parameters .
The classification is done with a maximum-likelihood classifier by finding the model
which has the maximum a posteriori probability for the given observation sequence

Y = (y1>YQ7 B 7YU)7 i.e.,

k = arg 12}52%19()\;{; |Y). (5.37)

According to the Bayes’s Rule this can be written as

A p(Y [ M) p (M)
k = arglrgr}%}% P (Y) .

(5.38)

By assuming all the classes equally likely, p(Ax) = %, and since p (Y) is independent

of k, the classification rule can be defined as

k = arg 11;}5%)%(}9(\( | Ak) - (5.39)

The forward and backward procedures can be used to estimate the probability
p(Y | Ax). In practice, however, this probability is approximated by the proba-
bility of the most likely state sequence. This can be efficiently obtained using the
Viterbi algorithm [Viterbi67]. The Viterbi algorithm is based on a similar recur-
sive structure as the forward and backward procedures, but instead of summing the
probabilities of all the possible state transitions only the transition with maximum
probability is used. Multiplications of small probabilities within the algorithm re-
quire very large dynamic range, thus log-likelihood scores are computed to avoid
numerical problems.
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In this chapter, we describe the examined classification approaches and present
the obtained results. This chapter is divided into three parts. In the first part,
recognition accuracies obtained for different classification approaches are evaluated
for the automatic musical genre recognition. In addition, the recognition accuracies
are compared with the human ability studied earlier in Chapter 4. In the second
part, detecting the used instruments in music signals is evaluated. In the third part,
the detecting drum segments in music signals is evaluated. All the algorithms and
the evaluations were implemented in Matlab, which is an efficient tool for testing
and evaluating signal processing algorithms.

6.1 Musical genre recognition

The automatic recognition of real-world audio signals according to musical genres
is studied in this section. Mel-frequency cepstral coefficients are used to represent
the time-varying magnitude spectrum of the music signal, and the recognition is
done based on these features. The music database described in Chapter 3 is used to
train statistical pattern recognition classifiers. We use the optimal Bayes classifier,
and assume equal prior probabilities for the classes. Different parametric models
for modelling the class-conditional densities are experimented. Two classification
schemes were studied, one using only higher-level genres as classes, and one using
also subgenres and allowing misclassifications at the level of higher-level genres.

6.1.1 Method of evaluation
Database

The utilised music database was described in detail in Chapter 3. Pieces from six
higher-level genres (classical, electronic/dance, hip hop, jazz/blues, rock/pop, and
soul/RnB/funk) were used in the evaluations, totalling 488 pieces for evaluating
the developed system. Pieces annotated as a world/folk were excluded from the
evaluations due to the miscellaneous nature of the genre. Manually annotated ap-
proximately one-minute long interval within each piece was used to represent the
piece in the simulations.
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Procedure

The feature set used in the simulations included 16-dimensional MFCC and AMFCC
feature vectors. Features were extracted in 20 ms windows. In order to avoid
numerical problems caused by small variances of the feature values, all the features
were normalised to have zero mean and unity variance. The normalisation was done
based on statistics calculated from the whole training data.

Typically, the features used (MFCC and AMFCC) would have been catenated to
form one feature vector, but it is possible that one model cannot efficiently model
feature distributions of the both features. Thus two separate models were trained,
one for the MFCC and one for the AMFCC. The likelihoods were calculated at first
individually for both of them. For the HMM, the likelihoods were calculated for the
whole analysis segment with the Viterbi algorithm. For the GMM, the likelihoods
were obtained by pooling all likelihoods of the frames within the analysis segment.
The feature streams were assumed independent, thus the likelihoods obtained for the
MFCC and for the AMFCC were joined together by multiplying them. Further, the
feature vector dimension and the analysis segment length were equal for the feature
streams, so no normalisation was required for the likelihoods. The classification
was performed by selecting the class with the highest likelihood. In preliminary
evaluations this classification scheme was found to give better results than using
a shared model for both features. A 25-second long analysis segment, from the
beginning of the annotated interval, was used in the classification unless otherwise
reported.

The pieces in the database were randomly divided into two separate sets, the training
set and the test set. Sets were formed by assigning 70 % of the pieces into the training
set and 30% into the test set. In order to ensure that the recognition accuracy would
not be biased because of a particular partitioning of training and testing, this random
division was iterated five times. The overall recognition rate was obtained as the
arithmetic mean of recognition rates of the individual iterations. Due to the varying
number of pieces in different classes (genres), the same weight was given to all the
classes by computing the recognition rate as follows:

1. For each class, the recognition rate was calculated as a percentage of correctly
classified pieces among all the classified pieces.

2. The overall recognition rate was calculated as the arithmetic mean of recogni-
tion rates of the individual classes.

6.1.2 Results
GMM
The use of the GMM for modelling the class-conditional densities was evaluated by

varying the number of Gaussian densities in the mixture model. The recognition
accuracies as a function of the number of Gaussians for the both classifiers, one
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Table 6.1: GMM classification accuracy mean and standard deviation
with different model orders.

Model MFCC AMFCC combined
order
2 4943 48+5 5444
4 5112 50+4 57+4
8 5343 55+3 5944
16 5644 56+2 61+4
32 5543 58+3 61+4
64 5643 5943 6244

Table 6.2: Genre confusion matrix for GMM (model order 64) trained
with MFCC. Entries are expressed as percentages and are
rounded to the nearest integer.

Tested Recognised class  electr hipH jazzB  rockP  soulR
classical 89 1 1 8 0 1
electronic/dance 3 30 30 11 12 14
hip hop - 2 68 3 18 8
jazz/blues 8 2 5 50 27 7
rock /pop 4 6 4 19 52 15
soul/RnB/funk 6 4 11 11 24 44

trained for the MFCC and one for the AMFCC, are presented in Table 6.1. The
recognition results obtained by joining output likelihoods of these classifiers are also
presented in the table. The + part shows the standard deviation of the recognition
accuracy for the train/test set iterations. The GMMs were trained using 40 iterations
of the Baum-Welch algorithm.

Feasible recognition accuracies were obtained already with classifiers trained for
MFCCs and AMFCCs alone. The recognition accuracies seemed to saturate when
the model order was 16 and only slightly increased after that. Interestingly, the ac-
curacy improved consistently while the model order was increased, and no overfitting
of the models to the training data was observed. In general, the best performance
was obtained using 64 Gaussian distributions in the mixture model. The classifica-
tion accuracy of a random guess is 16.6 % with six classes. Quite surprisingly, the
classifier trained for AMFCCs performed a bit better than one trained for MFCCs.
One possible reason for the rather high performance obtained using only AMFCCs
is transient-like sounds, generally present in music, which are likely to show in delta
coefficients. Tables 6.2 and 6.3 show the confusion matrix for the best-performing
MFCC and AMFCC configuration. The confusions made by the classifiers were
somewhat different, thus indicating that the classifiers used separate information
about the signal.
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Table 6.3: Genre confusion matrix for GMM (model order 64) trained
with AMFCC. Entries are expressed as percentages and are
rounded to the nearest integer.

Tested Recognised class electr  hipH jazzB rockP  soulR
classical 83 0 - 5 12 -

electronic/dance 6 48 13 3 20 9
hip hop - 7 72 - 7 15
jazz /blues 4 6 1 53 27 8
rock/pop 7 7 - 14 56 16
soul/RnB /funk 1 6 17 17 19 40

Table 6.4: Genre confusion matrix for system joining classifiers for
MFCC and AMFCC (both GMM with model order 64). En-
tries are expressed as percentages and are rounded to the near-
est integer.

Tested Recognised class electr  hipH jazzB rockP  soulR
classical 88 - - 8 2 3
electronic/dance 3 41 25 5 14 12
hip hop - 2 83 3 7 5
jazz/blues 4 2 3 54 27 10
rock /pop 2 6 2 21 50 20
soul/RnB/funk 3 6 15 8 17 51

The recognition accuracy was improved consistently by joining the likelihoods of
these two classifiers. The confusion matrix for the best-performing configuration
is presented in Table 6.4. Classical and hip hop are both recognised accurately.
Rock/pop is often misclassified as jazz/blues or soul/RnB/funk. The confusion
matrix also shows that some of the misclassifications are very similar to those of
humans. For example, soul/RnB/funk is in some cases very close to popular and
hip hop music.

HMM

Next, we studied the use of the HMM for modelling the class-conditional densities.
Unlike the GMM, also the temporal structure of the data is taken into account with
the HMM, since the HMM exploits transition probabilities between states. In order
to get some kind of idea what was modelled by different HMM states, the Viterbi
segmentation was visually studied after the training. In Figures 6.1 and 6.2, a three-
state HMM has been trained using one Gaussian component per each state. The
top panel shows the audio signal and the bottom panel shows the resulting Viterbi
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Daft punk — Harder, better, faster, stronger
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Figure 6.1: The top panel shows the time-domain signal of a piece and
the bottom panel shows the Viterbi segmentation through a
three-state HMM trained with the piece.

segmentation into the three states.

Figure 6.1 depicts a quite representative piece of modern dance music; its repeating
structure can even be seen from the audio signal. The HMM states seem to be
modelling parts of the repeating lower-level structure and the structure can be seen
nicely from the state transitions. A more broader instrumentation is used in the
piece shown in Figure 6.2, and the HMM states seem to model much larger structural
parts in the piece. However, states can be interpreted to model also properties of
individual sound events.

The states can be modelling some predominant instruments, some other properties
of sound, or the structure of the music piece. In general, forcing the states to model
certain properties of the music is difficult. Music should be segmented before training
and we do not have a clear view what segmentation scheme would be advantageous,
for example, in the musical genre recognition.

The genre recognition with the HMM was evaluated with a varying number of states
and Gaussians used to model the state output distributions. Table 6.5 shows recog-
nition accuracies as a function of the model order and number of states obtained
by joining the output likelihoods of separate classifiers trained for MFCCs and
AMFCCs. The training was done in an unsupervised manner, because we do not
know what are the underlying acoustic classes that are modelled with different HMM
states. The number of iterations in the Baum-Welch training algorithm was 10. Two
model topologies were studied: fully-connected and left-right. On the whole, left-
right topology performed better. There is no clear consistency on the results, partly
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Sade — No Ordinary Love

amplitude

index of HMM state

Figure 6.2: The top panel shows the time-domain signal of a piece.
The bottom panel shows the Viterbi segmentation through
a three-state HMM trained with the piece.

Table 6.5: Mean and standard deviation of classification accuracies with
varying HMM model topology and complexity. NS denotes the
number of states, and NC denotes the number of component
densities used to model output distribution of a state.

Fully-connected Left-right

NS 2 3 4 5 NS 2 3 4 )

NC NC
52+4 56+£3 55+3 58+4 52+4 57+4 58+3 58+£3
D73 58+3 583 5H8E2 573 59+5 59+3 59+£3
o8+£2 59+3 59+4 5H9+£3 o8E2 61+4 5945 61£3
29£3 H59+3 61£3 60+£2 58+2 61+4 60+£3 61£3
59+2 60£3 59+3 6142 09£4 60+3 61+4 61£3
60£3 59+4 59+3 59£2 61£3 60+4 61+5 61£3
60£3 60+4 61+4 61+4

09£3 60+4 60£2 60+£2
29£3 62+£3 60£2 60+3 60+3 60+4 60+£4 6144

00 ~J O Ul = Wi
OO Ul W N+

due to the sensitivity of the Baum-Welch algorithm for the initial parameters. On
average, incrementing the model order only slightly increased performance. The
number of states had not direct influence on the recognition accuracy.

A confusion matrix for one of the best-performing configurations is shown in Ta-
ble 6.6. The results were obtained with a five state left-right model topology, and

63



6 System evaluation

Table 6.6: Genre confusion matrix for HMM. Entries are expressed as
percentages and are rounded to the nearest integer.

Tested Recognised class  electr  hipH jazzB rockP  soulR
classical 88 - - 8 2 3
electronic/dance 3 41 25 5 14 12
hip hop - 2 83 3 7 5
jazz /blues 4 2 3 54 27 10
rock /pop 2 6 2 21 50 20
soul/RnB/funk 3 6 15 8 17 51

using four Gaussians to model the output distribution of the states. The initial
parameters for the Baum-Welch algorithm were obtained using K-means clustering
initialised randomly. In order to get a realistic view of the recognition accuracy of
the HMM, the training process was also iterated five times. The overall recognition
accuracy was obtained as an arithmetic mean of recognition accuracies for the indi-
vidual iterations. The recognition accuracy was 614+3%, and it is very close to the
results obtained with the GMM. In addition, the misclassifications are very similar
to the ones made by the GMM based recognition system.

HMM with discriminative training

The purpose of this set of simulations was to evaluate the usefulness of discrimina-
tive training for HMMs presented in [Ben-Yishai]. These results have been earlier
presented in [Eronen03b].

The discriminative training algorithm presented in Section 5.4.2 is rather time-
consuming because the classification has to be done also for the training set. In order
to reduce the computational load, evaluations were done only for one train/test set
division and only for the MFCCs. The Baum-Welch algorithm was used to train the
baseline HMMs, which were further trained with the discriminative training algo-
rithm. A maximum of five iterations of the discriminative training algorithm with a
fixed discrimination rate (n = 0.3) was found to give an improvement in most cases
without much danger of overfitting.

Table 6.7 shows the recognition accuracies as a function of the model order and
number of states with varying model topologies and training methods. As one can
see, discriminative training gives an improvement of only a few percentage points.
However, improvement is observed almost consistently across the tested model or-
ders, number of states, and topologies. Results presented here are not comparable
with previously presented results, since we are using only static MFCCs as features.
Furthermore, it as previous results showed, the joint use of the MFCCs and the
AMFCCs should give the best recognition accuracies.
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Table 6.7: Genre recognition accuracies for both training methods with
varying model topology and complexity. NS denotes the num-
ber of states, and NC denotes the number of component den-
sities used to model the output distribution of a state.

Fully-connected Left-right
NC NC
NS 1 2 3 4 NS 1 2 3 4
Baum-Welch Baum-Welch
3 52.9 53.8 53.8 55.7 3 52.4 53.7 54.7 55.2
4 54.3 54.6 55.0 56.8 4 54.0 55.0 56.2 56.1
Discriminative Discriminative
3 53.4 56.9 56.1 58.5 3 54.7 55.5 581 58.2
4 56.7 54.4 57.6 59.6 4 55.7 55.9 580 57.9

For HMMs with a small number of states and component densities, the discrimi-
native training clearly improved the recognition accuracy. For more complex state
densities no improvement was observed. This is due to the overfitting of the models
to the training data, which leads to a poor generalisation to unseen test data.

Genre hierarchy in the classification

In the previous evaluations, each higher-level genre was treated as a single class.
Since the higher-level genres used are formed hierarchically from subgenres, we also
studied the use of these subgenres in the recognition. When we are using class
models only for higher-lever genres, for example, jazz piece might be misclassified as
a soul/RnB/funk due to the poor fit of the model for the jazz/blues genre. However,
by using also the subgenres in the classification this might be avoided. The class
model just for the jazz or even for blues might fit better than one for jazz/blues. The
classification results are still examined only at the level of the higher-level genres by
allowing misclassification among subgenres.

The main idea was to use the higher-level genres and the subgenres under those
at the same time in the classification by relying on the assumption that most of
the misclassification will occur within a higher-level genre. The subgenres under
the higher-level genre are more likely to have common characteristics with each
other rather than with subgenres under some other higher-level genre. For this
reason, subgenres are more likely to be misclassified with the subgenres under the
same higher-level genre. So the model was trained not only for higher-level genre
e.g. jazz/blues, but also for subgenres blues and jazz, and in the classification
misclassifications are allowed among all these classes (jazz/blues, blues and jazz).
The classes used in the classification are shown in Table 6.8 along with the amount
of the available training and test data.

Only the use of the GMM for modelling the class-conditional densities was evaluated
in this set of simulations. The train/test set division was iterated five times as earlier.
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Table 6.8: The classes used in the classification. The higher-level genres
are denoted as bold text and the boxes indicate higher-level
genres. The number of training and test pieces for every genre
are also presented.

Musical genre #train #test Musical genre #train #test
classical 70 36 jazz / blues 63 33
chamber music 16 8 blues 22 10
classical general 26 14 jazz 28 16
solo instruments 8 4 fusion jazz 7 4
symphonic 7 3 latin jazz 6 3
vocal 4 2
rock / pop T4 AT
electronic / dance 45 26 country 7 5
ambient 4 3 metal 10 6
breakbeat /drum’n’bass 7 4 pop 22 14
dance 9 6 rock 35 22
house 7 4
techno 18 9 soul / RnB / funk 37 19
funk 9 4
hip hop 25 12 RnB 10 5)
soul 18 10

Although we had very different amounts of training material for each class, the
evaluations were done with a fixed number of Gaussians for all classes. The obtained
results are presented in Table 6.9. For the classification scheme also using subgenres,
the results were calculated as a mean of recognition accuracies for individual higher-
level genres. The recognition accuracy for a higher-level genre was calculated as
a percentage of pieces correctly classified either directly into higher-level genre or
into one of its subgenres. The recognition accuracy was improved only by a few
percentage points in comparison to the classification scheme using only higher-level
genres. However, the improvement can be observed consistently across the tested
model orders. The improvement was biggest with lower model orders. The small
improvement can be partly explained with the insufficient amount of training data
for some of the subgenres. The best performance was obtained using 64 Gaussian
distributions in the mixture model.

In Table 6.10, a confusion matrix at the level of the higher-level genres is presented
for the best-performing configuration (model order 64). More detailed information
about the performance for all the classes used in the evaluations is shown in Ta-
ble 6.11. The recognition rate at the subgenre level was 25 % while the random-guess
rate is 4.3 %. This classification scheme seems to work nicely for genres like classical
and rock/pop. For the electronic/dance the scheme did not work as intended, but
fortunately, pieces from other genres did not confuse with its subgenres. Some of
the misclassifications were expected, for example, RnB is quite easily confused with
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Table 6.9: Genre recognition with different classification schemes. Mean
recognition accuracies with standard deviation are presented
for different model orders of the GMM.

higher-level including
NC
genres subgenres
2 54+4 56+4
4 D7+4 60+4
8 59£4 60£3
16 61+4 62+3
32 61£3 62+4
64 62+3 63+4

Table 6.10: Genre confusion matrix at the level of the higher-level gen-
res for the best-performing hierarchical classification scheme.
Entries are expressed as percentages and are rounded to the
nearest integer.

Tested Recognised class  electr  hipH jazzB rockP  soulR
classical 91 1 - 6 1 2
electronic/dance 3 41 22 6 19 8
hip hop - 2 78 2 12 7
jazz/blues 4 1 1 58 30 7
rock /pop 2 5 1 15 63 13
soul/RnB/funk 4 4 15 15 18 44

hip hop and electronic/dance.

Recognition rate as a function of analysis excerpt duration

We also studied the recognition rates as a function of the analysis excerpt length.
There is a remarkable uncertainty of the performance measurement with the shorter
analysis excerpt durations since the performance greatly depends on the starting
point of the excerpt. The beginning of the one-minute representative part was used
as a starting point in these simulations. When the duration of analysis excerpt
increases the uncertainty of the performance measurement decreases.

In Figure 6.3, the recognition rates of different classifiers are shown as a function
of the analysis excerpt duration. The graph was created by increasing the excerpt
duration gradually from 0.15 seconds to 28 seconds. The behaviour of three different
classifiers was studied: two using GMM to model class-conditional densities with 64
Gaussians, and one using HMM modelling with five-state left-right topology and
four Gaussian components. For the GMM, two classification schemes were studied:
one using only higher-level genres, and one using also subgenres. Increasing the

67



6 System evaluation

Table 6.11: Genre confusion matrix including subgenres. Entries are ex-
pressed as percentages and are rounded to the nearest inte-
ger. Higher-level genres are denoted as bold text. The boxes
indicate higher-level genres.
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Figure 6.3: Recognition rates as a function of analysis excerpt duration
for following classification approaches: GMM and HMM with
six higher-level genres, and GMM with the use of genre hi-
erarchy (denoted with GMMG64h).

excerpt duration improves the overall recognition accuracy as expected. It should
be noted that the recognition accuracy grows rapidly until the analysis duration
reaches two seconds and further lengthening of the duration does not give such
a significant improvement anymore. For both of the classifiers using GMM, the
recognition accuracy reaches reasonable level (over 50%) already within 0.5 seconds.
For the classifier using the hierarchical classification scheme, the recognition curve
seems to converge around 7 seconds to the level of 60%. A small increase can be
noticed after 20 seconds, ending up to the level of 64% at 27 seconds. The learning
curves of studied classifiers are rather close to each other, and the trend of them is
ascending on average. The recognition accuracy for the classifier using HMM did
not increase as rapidly as with classifiers using the GMM.

6.1.3 Comparison with human abilities

An experiment was conducted to enable a direct comparison with human abilities
(see Chapter 4). Since musical genre recognition is not a trivial task, this is essential
in order to get a realistic comparison of the recognition rates. The full stimulus set
used in the listening experiment was employed in the simulations. In the listening
experiment, the test subjects were divided into two groups each having a separate
set of stimuli. In training of the computational model, separate training sets were
formed for both of these groups from the music database, excluding only the pieces
used in that group in the listening experiment. This makes good use of the available
training data and guarantees that system has not heard the piece being tested before.

Table 6.12 shows the main results of the experiment. The recognition was done
with the developed recognition system and the results were pooled as in Chapter 4.
Two classification schemes were examined, basic classification with only higher-level

69



6 System evaluation

Table 6.12: Direct comparison to human abilities. Mean and standard
deviation of the recognition rates of classifiers using GMM
and HMM.

Sample | Human GMM HMM
duration NC16 NC32 NC64 NC64 NC4
hierarchy ~ NSbH

250 ms 57 48+7 48+7 ATET 46+8 AT+7

500 ms 63 53+8 5245 5246 5245 50+£8
1500 ms 69 56+6 54+6 5516 5516 54+6
5000 ms 75 57+7 57T+7 59+6 59+6 59+6

Table 6.13: Confusion matrix for the genre recognition with 250 ms ex-
cerpts. Entries are expressed as percentages.

Tested Recognised class electr hipH jazzB rockP soulR
classical 72 6 2 14 4 2
electronic/dance 8 33 14 14 17 14
hip hop - 11 55 7 11 17
jazz/blues 8 8 4 40 20 21
rock/pop 1 7 5 29 41 17
soul/RnB/funk 3 18 9 16 16 38
Totals 15 14 15 20 18 18

genres and classification including also the subgenres. The use of the GMM was
evaluated with a varying model order. The use of the HMM was evaluated only
with the best-performing left-right model configuration. The evaluated classifier
configurations performed in the same way throughout the simulation. Only a small
improvement was obtained by increasing the sample duration. Human listeners out-
performed the developed system by 10-16% depending on the sample duration. The
performance gap between humans and the developed system is larger with longer
samples. Increasing the excerpt duration does not bring any essentially new infor-
mation to the recognition, since the developed system only uses frequency domain
features excluding all the long-term (rhythmic) information of the music.

Tables 6.13 and 6.14 show the confusion matrices for the best-performing configu-
ration. If we compare them with earlier presented human confusions (see Tables 4.3
and 4.4) we can see that confusions are rather similar. The recognition of classical
music is easy for both, and soul/RnB/funk is confused with many other genres.

”Agreement scores” were calculated in order to more precisely evaluate the similarity
of the confusions made by the developed recognition system and human listeners.
The agreement is defined here as a similar classification result among the devel-
oped recognition system and human listeners. Two different "agreement scores” are
calculated:
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Table 6.14: Confusion matrix for the genre recognition with 5000 ms ex-
cerpts. Entries are expressed as percentages.

Tested Recognised class electr hipH jazzB rockP soulR
classical 91 3 - 3 3 2
electronic/dance 9 35 16 9 19 13
hip hop - 2 72 3 10 14
jazz/blues 6 3 1 50 30 11
rock /pop 5 3 20 61 12
soul/RnB/funk 5 12 7 5 22 51
Totals 18 10 16 15 24 17

Table 6.15: ”Agreement scores” between the developed recognition sys-
tem and humans. Agreement among right classifications is
denoted with A and among wrong classifications is denoted
with B. Entries are expressed as percentages and are rounded
to the nearest integer.

Duration Overall | class electr hipH jazzB rockP soulR
250ms A | 70 94 59 81 55 67 33
B 21 11 28 23 19 19 21
500ms A | 76 93 73 89 63 74 34
B 23 9 22 27 27 20 23
1500 ms A | 79 99 72 92 61 79 44
B 20 8 17 27 27 17 17
5000ms A | &4 99 81 95 74 86 49
B 18 0 15 23 19 25 14

e Percentage of agreement among samples that were classified correctly by the
developed recognition system (denoted here with A).

e Percentage of agreement among samples that were classified wrong by the
developed recognition system (denoted here with B).

The calculated scores for the best-performing configuration are shown in Table 6.15.
Humans agreed with the developed system in over 70 % of the cases where the de-
veloped system recognised the right genre, and in around 20 % of the cases where
the developed system failed. Based on these scores one can conclude that the de-
veloped system and the human listeners agreed most of the time with the correct
classifications. However, with wrong classifications the developed system mostly
picked a different genre than the human listeners. When the sample duration in-
creased, the agreement among correct classifications gradually increased, but the
agreement among false classifications remained almost the same. Agreement is high
among the correct classifications especially for classical and hip hop. For classical,
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this can be explained with high recognition accuracy for humans and the developed
system. There is low agreement among the correct classification of soul/RnB /funk,
highlighting the fact that the genre is rather close to the other genres.

6.1.4 Discussion

Despite the rather fuzzy nature of the musical genres, automatic musical genre
recognition could be performed with an accuracy much beyond the random-guess
rate. Moreover, the obtained results were comparable to the human abilities to
recognise musical genres. Reasonable recognition rate (60 %) was already obtained
with seven-second long analysis excerpts.

The performance differences between the evaluated classifiers were only marginal.
However, the parameter estimation is more straightforward for the GMM classi-
fier. The discriminative training for HMM provided minor improvements with small
model orders. The classification scheme using also subgenres proved to be the best
approach. However, this approach needs a much larger and wider database in order
to accurately model smaller subgenres.

6.2 Instrument detection

Instrument recognition has proved to be a demanding task even for monophonic
music played by a single instrument [Martin99, EronenO1]. In this section, the
detection of instruments used in polyphonic music signals is studied. The basic
idea of “detection” differs from classification. Unlike classification, we have a prior
hypothesis about the instrument present in the music and we are verifying that
hypothesis.

Detection of the instruments used provides useful information for many MIR related
tasks, e.g. for automatic musical genre recognition. Some of the instruments are
characteristic for some genres. For example electric guitar is a pretty dominant
instrument in rock/pop, but is hardly ever used in classical music. Detection of the
following five instruments was attempted:

e bowed (including all bowed instruments, e.g. violin, viola, cello, and string
section)

e clectric guitar
e piano
e saxophone (including all saxophones: tenor, alto, soprano, and baritone)

e vocals (including choir)
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The magnitude spectrum of the music signal was represented with MFCCs and
AMFCCs. The class-conditional densities were modelled either with a GMM or an
HMM. Two models were trained, one for music including the instrument and one
for music including all kind of instruments. The detection was done based on the
likelihood-ratio of these models for the given music. The likelihoods were obtained
by multiplying the likelihoods for the separate models trained for the MFCCs and
the AMFCCs.

6.2.1 Detection

The task of instrument detection is to determine if the hypothesised instrument [
is played in a given segment of music, Y. The instrument detection can be also
referred to as instrument verification. The segment of music will most probably
contain other instruments too, and these are just considered as noise. The detection
methods used here are adopted from speaker detection [Campbell97]. The detection
task can be restated as a test between the hypotheses:

Hy: The hypothesised instrument I is played in Y
H,: The hypothesised instrument I is not played in Y

Hy is represented by a model denoted Ay, that characterises the hypothesised in-
strument [ in the feature space of the music, . The test to decide between these
two hypothesis for feature vector x is a log-likelihood ratio test given by:

>0, accept Hy

<0, rejectHy ’ (6.1)

g x| ) o (< )

where p (x | Apyp) is the likelihood of the hypothesis Hy evaluated for the observed
features x, and p (x | )\%) is likelihood of the hypothesis H;. The decision threshold
for accepting or rejecting Hy is 6. The evaluated classifiers were used to produce
values for the two likelihoods, p (x | Anyp) and p (x| M)

The model for the hypothesis Hy is clearly defined, and can be estimated using
training material with instrument I present. The estimation of the model A is
not straightforward, since it potentially must represent the entire space of possible
alternatives to the hypothesised instrument. The alternative hypothesis is modelled
here by pooling music with several instruments and training a single background
model. In preliminary studies, it was found to give better results to also include
music with the hypothesised instrument in the training set of the background model.
The advantage of this is that a single instrument-independent model is trained only
once and then used as background model for all hypothesised instruments in the
study.
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6.2.2 Method of evaluation
Database

The utilised music database was described in Chapter 3. A homogeneous ten-second
interval with annotated instruments was used in the evaluations. In order that
the segment was accounted for the instrument had to be the most predominant
or the second most predominant accompanying instrument or one of the melody
instruments. Due to different instrumentation in the musical genres instruments did
not occur evenly among the musical genres (see Table 3.2). This had to be taken
into consideration when analysing the obtained results.

Procedure

Since there was only a rather small amount of evaluation material available, 60 % of
it was assigned into a training set and the rest 40% to the test set. In order to ensure
that the detection accuracy would not be biased because of a particular partitioning
into train and test sets, evaluation was repeated for five random divisions.

There are two types of errors made by the detection system: false acceptance (FA)
and false rejection (FR). Either one of the errors can be reduced at the expense of
the other. A single performance measure is inadequate to represent the capabilities
of the system, since the system has many levels of sensitivity. The ideal tradeoff
between the two types of errors depends on the needs of the application, whether a
low FA or a low FR is more critical. The levels of both types of errors are represented
by a performance curve when measuring the overall system performance. The rates
of the FA and the FR are adjusted by changing the value of the decision threshold
0. The equal error rate (EER) is an operating point having equal rates of FA and
FR. The EER was used to produce the detection rate in the evaluations.

6.2.3 Results

The instrument detection was evaluated by varying parameters of the classifiers. In
the preliminary evaluations, it was noticed that neither the number of states nor
the model order had any significant effect on the detection accuracy while using
HMMs. So HMMs were tested only with the fixed parameter set and only the
model topology was varied. A three-state HMM using six Gaussians to model the
output distribution of states was selected to be used in the evaluations. The decision
threshold was instrument-specific and the common threshold was used throughout
the train/test set iterations. The detection accuracies for the tested classifiers are
presented in Table 6.16. The detection rates obtained with the HMMs were very
similar to the ones obtained with the GMMs.

The highest detection accuracy was achieved for bowed instruments. The bowed
instruments are used mainly in classical music, thus the detector was making the
detection mainly based on the musical genre and not the instruments used. This
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Table 6.16: Instrument detection results. Entries are expressed as per-

centages.
bowed electric piano  saxophone vocals
guitar

GMM NC16 84 65 74 64 78
NC32 85 63 73 65 78
NC64 86 63 71 67 7
HMM  fullyC 84 64 73 65 7
NS3  leftR 84 63 74 68 76

NC6

partly explains the good performance for bowed instruments. Acceptable detection
accuracies were obtained for piano and vocals. Piano is widely used in many different
genres, and thus the detection of piano was mainly based on the presence of the
instrument. Although vocals are present in many genres, the problem here was
that pure instrumental pieces are very rare in some genres, e.g. in hip hop or in
soul/RnB/Funk. Nevertheless, the detection was mainly done based on the presence
of vocals. Very low (around 65 %) detection accuracies were achieved for electronic
guitar and saxophone. However, the accuracies were still better than pure chance

(50 %).

The Receiver Operating Characteristic curve (ROC) is used to depict the tradeoff
between FA and FR for the detection system [Egan75]. The probability of the FA
versus probability of the FR is plotted by changing the threshold of acceptance
for the log-likelihood ratio. The equal error probability is denoted by a dotted
diagonal line in the ROC curve. Figure 6.4 shows the ROC curves for the best-
performing detector configurations. The closer to the origin the curve is the better
the performance of the detection system.

6.2.4 Discussion

Despite the demanding conditions (polyphonic multi-instrument real-world music)
the detection for the evaluated instruments could be performed with rates signifi-
cantly better than chance. Acceptable detection accuracy was obtained for bowed,
vocals, and piano. The achieved detection accuracy for vocals is comparable to
detection results (80 %) presented in [BerenzweigO1]. One of the problems in the
simulations was that some of the instruments are mainly used in particular genres
only. Thus it was hard to form a well-balanced evaluation database and this caused
the detector to detect eventually the musical genre rather than the instrument.
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Figure 6.4: Plot of ROC curves for the best-performing configuration of
the instrument detectors. EER is denoted by a dotted diag-

onal line.
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6.3 Locating segments with drums

The objective here was to segment musical signals according to the presence or ab-
sence of drum instruments. Two different approaches were taken to solve the prob-
lem. The other one was based on periodicity detection in the amplitude envelopes
of the signal at subbands, as discussed in Section 5.3. The other mechanism applied
straightforward acoustic pattern recognition approach with MFCCs as features and
a GMM and k-nearest neighbour classifiers. Approaches and the simulations results
have been previously presented in [Heittola02].

6.3.1 Test setup

A subset of the music database described in Chapter 3 was used to evaluate the
two drum detection schemes. Detailed statistics of the used database was shown in
Table 3.3. The annotations of segments with and without drums were used with
a precision of one second in the simulations, and only more than five second long
stable segments were included in the simulations. The evaluation database was not
nicely balanced from the point of view of the amount of material with and without
drums in each individual genre. This was expected, since drums are a basic element
in many Western musical genres.

In order to assure that we have our train and test sets as balanced as possible, the
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Figure 6.5: Effect of weighting before SACF.
following scheme was used:

1. Pieces were divided into the seven higher-level genres (see Table 3.3).

2. These genres were further divided into three sub-categories: pieces containing
only segments where drums are present, pieces containing only segments where
drums are absent, and pieces containing both kind of segments.

3. Fifty percent of the pieces in each sub-category were randomly selected to the
training set, and the rest to the test set.

4. An individual piece may appear only in the test or in the train set, but not in
both.

6.3.2 Results
Periodicity Detection Approach

Despite the preprocessing, also other instruments may cause peaks to the bandwise
autocorrelation functions. However, drum instruments tend to be more prominent
at the low or high frequencies, and based on this observation frequency bands are
weighted differently. An optimal weight vector W;, has to be determined to be used
in the SACF formulation, defined in Eq. 5.6. For this sake, a smaller simulation
was carried out. Test set was formed using scheme described above, but only 30 %
of pieces were chosen. Results are presented in Figure 6.5. Performance difference
between the flat line (78.7 %) and steep parabola (80.6 %) was quite small. However,
the best performance is reached with equally weighted lower and higher band and
attenuation for centre bands. So a fixed unit weight for both the highest and the
lowest band, and 1/100 weight for centre band was used in final simulations.
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Table 6.17: Results using periodicity detection.

Musical genre Performance Drums Drums
absent present
classical 83 % 84 % 78 %
electronic / dance 91 % 61 % 96 %
hip hop 87 % 70 % 88 %
jazz | blues 75 % 38 % 79 %
rock / pop 83 % 82 % 83 %
soul / RnB / funk 78 % 80 % 78 %
world / folk 69 % 52 % 92 %
Total 81 % 7T % 83 %

Fifty percent of the pieces were used to estimate feature value distributions for
intervals with and without drums. Division between this distribution estimation set
and final test set was done using scheme described above. Obtained feature value
distributions were presented earlier in Figure 5.6. The feature value distributions of
the two classes overlap each other somewhat, because the stochastic residual contains
harmonic components and beginning transients from other instruments, too, and in
some cases these show very much drum-like periodicity. Thus the starting hypothesis
that periodic stochastic components reveal drum events was still mainly right. More
attention should be paid for the preprocessing system in order to make concluding
remarks. Based on these feature value distributions, a threshold was chosen to
produce an equal error rate for segments with and without drums. Detection results
obtained with this threshold value are shown in Table 6.17. Overall performance
was 81 % and the performance is rather well-balanced between segments with and
without drums.

Acoustic Pattern Recognition Approach

As was discussed earlier in Section 5.3, drums have characteristic spectral energy
distributions. The spectral energy of a bass drum is concentrated to lower frequen-
cies. Cymbals and hihats occupy a wide frequency band, mainly concentrated to the
treble end. The highest frequencies of the cymbals and hihats are so high that there
are only a few other instruments to have prominent frequency components in the
same range (e.g. strings). Therefore drums make a significant contribution to the
overall tone colour of musical signals. Based on this, an ability of acoustic features
to indicate the presence of drums in musical signals was studied. MFCCs alone
and catenated with AMFCC were evaluated as features. For catenated features a
single classifier was trained, unlike in the classification approach used in the musical
genre recognition where separate classifiers were trained for the features. In order
to avoid numerical problems, the features were normalised to have zero mean and
unit variance.

The results obtained with the GMM are shown in Table 6.18. Separate models were
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Table 6.18: Results for the GMM with a varying model order.

Number MFCC MFCC+AMFCC| MFCC+AMFCC

of with with without
Gaussians preprocessing preprocessing preprocessing

4 82 % 86 % 86 %

8 83 % 86 % 87 %

12 84 % 86 % 86 %

16 83 % 86 % 86 %

24 84 % 87 % 87 %

Table 6.19: The best-performing GMM configuration with two global

model.
Musical genre Performance Drums Drums
absent present
classical 90 % 97 % 39 %
electronic / dance 89 % 49 % 96 %
hip hop 94 % 26 % 98 %
jazz / blues 74 % 58 % 76 %
rock / pop 92 % 68 % 95 %
soul / RnB / funk 91 % 7T % 93 %
world / folk 68 % 48 % 95 %
Total 87 % 84 % 88 %

estimated for two classes, one for music with drums and another for music without
drums. A three-second long analysis excerpt was used in the evaluations. As one
can see, the overall performance was slightly better than with periodicity detection
approach. The performance was improved by adding the AMFCC in the feature
set. There was only marginal performance difference between original signal and
preprocessed signal (stochastic residual signal from the sinusoidal modelling) with
this approach.

If we take a closer look to the results of the best-performing configuration presented
in Table 6.19, we will see that performance was not evenly distributed within dif-
ferent musical genres. Although a high performance was obtained for one class
(e.g. drums present), the other failed within the individual musical genre. In other
words, the system starts to recognise the musical genre rather than the drums. This
is clearly seen for classical music, for example. Due to the small amount of training
material for classical music with drums, GMM was unable to model it effectively
with one generic model for all genres with drums present.

In order to prevent this, the number of GMM models was increased. Two models
were estimated for each musical genre: one for intervals with drums and one for
interval without. The musical genre was ignored in the classification, and the clas-
sification was done based on the set of models (models calculated for intervals with
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Table 6.20: The best-performing GMM configuration with two models
for each of the musical genre.

Musical genre Performance Drums Drums
absent present
classical 86 % 89 % 61 %
electronic / dance 89 % 63 % 95 %
hip hop 90 % 25 % 94 %
jazz / blues 71 % 67 % 71 %
rock / pop 89 % 77T % 90 %
soul / RnB / funk 92 % 85 % 93 %
world / folk 66 % 46 % 93 %
Total 84 % 80 % 86 %
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Figure 6.6: Detection accuracy as a function of analysis excerpt duration
for the best-performing GMM configuration.

drums and for intervals without drums) that gave the highest likelihood. The results
were somewhat better balanced than those obtained with just two joint models for
all the genres, as shown in Table 6.20.

In Figure 6.6, the overall performance of the best-performing configuration is shown
as a function of the analysis excerpt duration used in the classification. A reason-
able performance (81 %) was achieved already with 100 ms analysis excerpts. The
performance seems to converge to the level of 85.5% around 3 seconds and after 9
seconds the performance is gradually increasing ending up to the level of 87% at 12
seconds.

In addition, a k-NN classifier was also used in order to evaluate differences between
the classifiers. The classification is done by calculating the distance between every
test point and all the training data. The features were processed before using them
with the classifier in order to reduce amount of calculations needed. The mean and
the standard deviation of each feature were calculated within frames of 0.5 seconds,
and these were used in place of the original features. This doubled the amount of
features, but significantly reduced the amount of feature vectors over time. The
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Table 6.21: Detection results for k-NN classifier with k& being 5.

Musical genre Performance Drums Drums
absent present
classical 83 % 88 % 44 %
electronic / dance 86 % 25 % 96 %
hip hop 95 % 11 % 99 %
jazz / blues 7% 47 % 80 %
rock / pop 89 % 46 % 93 %
soul / RnB / funk 89 % 46 % 93 %
world / folk 60 % 32 % 95 %
Total 83 % 71 % 89 %

performance was slightly improved by increasing the number of “voting” points, k.
When only the closest neighbour was considered performance was 80 % and with
the five closest neighbours it was 83%. The results obtained with the five closest
neighbours are presented in Table 6.21. The performances obtained with k-NN
were between the ones obtained with the GMM and the ones obtained with the
periodicity detection approach. The performance was more imbalanced than with
other approaches.

Combination of the two approaches

The presented two drum detection systems are based on different information, one
on periodicity and one on spectral features. One would thus expect that a combi-
nation of the two systems would perform more reliably than either of them alone.
Fusion of the two systems was realized by combining their output likelihoods. For
periodicity detection, the likelihood is obtained from the feature value distributions
presented in Figure 5.6. The results are presented in Table 6.22. Only a minor
improvement (1-2 %) was achieved. This is due to the fact that both of the systems
typically misclassified within the same intervals. For example, jazz pieces where
drums were played quite softly with brush, or ride cymbal was continually tapped
were likely to be misclassified with both systems. However, the misclassification
might be acceptable in some cases, since the drums are difficult to detect even for a
human listener.

6.3.3 Discussion

The obtained results of different approaches are rather close to each other and, some-
what surprisingly, the combination performs only slightly better. This highlights a
fact which was also validated by listening, both system fail in borderline cases that
are difficult, not just due to algorithmic artefacts. Achieved segmentation accuracy
of the integrated system was 88 % over a database of varying musical genres. The
misclassified intervals are more or less ambiguous by nature, and in many cases a user
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Table 6.22: Comparison of the results obtained earlier and by combin-
ing the best-performing GMM configuration and periodicity

detection.
Detection system Overall Drums Drums
performance absent present
Periodicity detection 81 % 77 % 83 %
GMM 87 % 84 % 88 %
Combined detection 88 % 84 % 90 %

might tolerate the misclassifications. However, drum instrument detection was the
best-performing instrument detection system studied (see results in Table 6.16). In
order to construct a substantially more accurate system, it seems that more compli-
cated sound separation and recognition mechanism would be required. In non-causal
applications, longer analysis excerpts and the global context can be used to improve
the performance.
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7 Conclusions

We have studied the automatic classification of music signals according to their gen-
res and instrumentation. Furthermore, a listening test was conducted to determine
the level of human accuracy in recognising musical genres. An important part of the
work was to collect and annotate a general-purpose music database to be used in
different areas of MIR. This was a time-consuming task but worth the effort, since
the amount of the training data is an important factor when evaluating classification
systems.

The listening test showed that recognition of musical genres is not a trivial task
even for humans. On the average, humans were able to recognise the correct genre
in 75 % of cases (given 5000 ms samples). The recognition accuracy was found to
depend on the length of the presented sample. Fairly good recognition accuracy
was achieved even for the shortest-sample lengths, 250 ms and 500 ms, indicating
that humans can do rather accurate musical genre recognition without long-term
temporal features such as rhythm.

Based on our studies, automatic musical genre recognition can be done with accuracy
significantly above chance, despite the rather fuzzy nature of musical genres. MFCCs
and AMFCCs were used to represent the time-varying magnitude spectrum of music
signals and the genre-conditional densities were modelled with HMMs. The best
accuracy (around 60 %) is comparable to the state-of-the-art systems. A slight
improvement was obtained by using subgenres along with six primary musical genres
in the classification. The results are comparable to the human genre recognition
abilities, especially in the case of the shorter sample lengths.

Musical instrument detection was studied for a few pitched instruments using MFCCs
and AMFCCs as features and modelling instrument-conditional densities with HMMs.
Despite the demanding conditions with polyphonic multi-instrument music, fairly ac-

ceptable detection accuracies were achieved for some instruments. A novel approach

for drum instrument detection was proposed. The presence of drum instruments

in music was determined by periodicity detection in the amplitude envelopes of the

signal at subbands. Rather good detection accuracy (81 %) was obtained with this

approach.

There is still a lot of work to be done before we have a complete and reliable mu-
sic classification system. Using a genre hierarchy and genre-dependent features in
the classification seems a promising approach. Additionally, the use of rhythmic
information in genre recognition may provide better performance. For instrument
detection, instrument-specific features and possibly sound separation need to be
studied to make the detection more accurate.
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A Musical genre hierarchy

The musical genre hierarchy (taxonomy) used in this thesis is listed here.

Classical

Chamber Music
Chamber Brass
Chamber Orcestra
Chamber Percussion
Chamber Strings
Chamber Woodwinds

Classical General

20th Century & Contemporary
Classical Crossover
Electronic Classical
Experimental Classical
Expressionism
Impressionism
Minimalist
Nationalism
Serialism
Third Stream

Baroque

Classical Era

Medieval

Renaissance

Romantic
19th Century Romantic
20th Century Romantic

Crossover

Film Music

Electronic / Dance

Ambient
Abstract
Ambient Breakbeat
Ambient Dub
Ambient House
Ambient Ragga
Ambient Techno
Dark Ambient

General Instrumental
Marches
Polka
Waltzes

Solo Instruments
Solo Brass

Solo Guitar

Solo Percussion

Solo Piano & Keyboards

Solo Strings

Solo Woodwinds

Solo Instruments w/ Accompaniment
Brass w/ accompaniment
Guitar w/ accompaniment
Percussion w/ accompaniment
Piano & Keyboards w/ accompaniment
Strings w/ accompaniment
Woodwinds w/ accompaniment

Symphonic

Vocal
Choral
Opera
Small Vocal Ensembles
Solo Vocal

Darkside Ambient

Dance
Alternative Dance
Club
Dancehall Dance
Disco Dance
Euro Dance
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A Musical genre hierarchy

Freestyle Dance
Gabber
High-NRG

Breakbeat /breaks/Drum n’ Bass

Ambient Drum N’ Bass
Big Beat
Down Tempo
Mlbient
Trip Hop
Funky Breaks
Future Funk
Jump-Up
Jungle Drum-N-Bass
Tech Step

Electronica
Progressive Electronica
Symphonic Electronica

House
Acid House
Deep House
Funk House
Garage House
Hard House
House Acid
Latin House
Madchester
Newbeat
Progressive House
Speed Garage
Vocal House

Hip Hop / Rap

Alternative
Bass Assault
Bass Music
British Rap
Christian Rap
Comedy Rap
Crossover Rap
Dirty Rap
East Coast
Electric Funk
Foreign Rap
Freestyle Rap
G-Funk
Gangsta Rap
Hardcore Rap
Horror Core
Jazz-Rap

Industrial
Dark Techno/Darkwave
EBM
Electro
Industrial Dance
Industrial Rock

Techno/Trance
Acid Techno
Detroit Techno
Gabber Techno
Garage Techno
Electro
Experimental
Minimalist Experimental
Noise
Happy Hardcore
Hardcore Techno
Minimal Techno
Intelligent Techno
Neo-Electro
Old Skool Techno
Rave
Techno Dub
Trance
Goa
Hard Trance/Acid
Melodic Trance
Progressive/Dream
Psytrance
Tech Trance
Traxx
Tribal

Latin Rap

Miami Bass

New Jack R&B Rap
New School

Old School

Party Rap
Pop-Rap

Rap Core

Rap Metal
Rap-Rock

South West
Southern Rap
Suburban Rap
Turntablist-Solo
Turntablist-Group
Underground Rap
West Coast
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A Musical genre hierarchy

Jazz / Blues

Blues
Acoustic Blues
Blues Country
Blues Rock
Blues Vocalist
Chicago Blues
Classic Female Blues
Delta Blues
Early American Blues
Electric Blues
General Blues
Jump Blues
Modern Blues
Spiritual Blues

Christian Blues

Improvised

Jazz
Acid Jazz
Afro-Cuban Jazz
Ballad Jazz
Bebop
Big Band Jazz
Modern Big Band Jazz
Boogie-Woogie
Bossa Nova
Contemporary Acoustic Jazz
Cool Jazz
Crossover Jazz

Rock / Pop

Alternative
Alternative General
Ambient Alternative
Experimental Alternative

Country

Alt Country

Adult Country Themes

Alternative Country

Cowpunk

Bluegrass
Contemporary Bluegrass
New Grass
Progressive Bluegrass
Traditional Bluegrass

Country Blues
Skiffle

Country General

Country Rock

Country Soul

Honky-Tonk

New Country

Progressive Country
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Dixieland

Electronic Jazz

Experimental Jazz

Free Jazz

General Jazz

Hard Bop

Jazz Blues

Jazz Folk

Jazz Fusion
Contemporary Jazz Fusion
Experimental Jazz Fusion
World Jazz Fusion

Jazz Organ
Jazz Organ Blues

Jazz Piano
Jazz Piano Blues
Stride Piano Jazz

Jazz Vocals

Latin Jazz

New Orleans Style Jazz

R&B Jazz

Ragtime

Smooth Jazz

Swing

Traditional Jazz

West Coast Jazz

World Jazz
Brazilian Jazz
Indian Jazz

Rockabilly Country
Spiritual Country
Christian Country
Square Dance
Tejano Country
Tex/Mex
Western Swing

Easy Listening
Adult Contemporary
Chamber Pop
Easy Listening General
Lounge
Crooners/Vocal Stylists
Love Songs
Ballads
Mood Music
Musicals/Broadway
New Age
Adult Alternative Country
Contemporary Instrumental
Meditation
New Age Electronic
New Classical



A Musical genre hierarchy

Relaxation

Self-Help

Sounds of Nature

Space

Spiritual
Singer-Songwriter
Spiritual Easy Listening

Children’s Christian

Christian Easy Listening

Contemporary Christian

Leftfield

Metal

Alternative Metal

Black Metal

British Metal

Dark Ambient/Noise

Death Metal

Doom/Stoner Metal

Gothic Metal

Grindcore

Hair Metal

Hard Core Metal

Heavy Metal

Industrial Metal

Instrumental Metal

Metalcore

Metal Rap

Power Metal

Progressive Metal

Speed Metal

Spiritual Metal
Christian Metal

Thrash

New Wave

Pop
Acoustic Pop
Adult Conremporary
Alternative Brit Pop
Mod
Shoegazer
Beach Pop
British Pop
Dream-Pop
EuroPop
French Pop
Grunge-Pop
Holiday Pop
J-Pop
Jangle Pop
Latin Pop
Noise Pop
Polka Pop
Pop Vocals
Power Alternative Pop
Power Pop
Reggae
Spiritual Pop
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Christian Pop
Synth Pop
Teen Idol

Punk

Emo

Folk Punk

Garage

Hardcore Punk
Post Hardcore
Oi

Lo-Fi/Garage

Old School Punk

Pop Punk

Post Punk

Proto-Punk

Psycho-Billy

Riot Grrr

Ska Punk

Skate Punk

Surf Punk

Straight Edge Punk

Twee Cuddle Core

Rock
AAA/Adult Alternative
Acid Rock
Acoustic
Adult Alternative Rock
Adventure Rock
Americana
Arena Rock
Art/Progressive Rock
Alternative Rock
Alternative Space Rock
Avant-Rock
Beach Rock
Boogie Rock
British Invasion
British Rock
British Traditional Rock
Classic Rock
Classical Rock
Comedy Rock
Electronica Rock
Experimental Rock
No Wave
Folk Rock
Funk Rock
Garage Rock
Glam Rock
Goth Rock
Alternative Gothic Rock
Christian Gothic
Industrial Gothic
Groove Rock
Guitar Rock
Guitar Virtuoso
Grunge
Neo Grunge
Post Grunge
Hard Rock
Improv Rock
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Indie

Indie Pop/Lo Fi
Instrumental Rock
Latin Rock
Math Rock
Neo-Psychedelia
New Wave

New Romantic Rock
Noise Rock
Progressive Rock
Psychedelic
Rock & Roll
Rock En Espanol
Rockabilly
Soft Rock

Acoustic Soft Rock

Soul / RnB / Funk

Funk
Acid Funk
P-Funk

Gospel
Alternative CCM
CCM Contemporary
Gospel Hymns
Inspirational
Instrumental Gospel
Jewish
Reggae Gospel
Spirituals
Traditional Gospel

R&B
Contemporary R&B

World /Folk

African

Asia

Caribbean

Celtic

ceremonial /chants
European

folk

Latin American
Mediterranean
Middle East

Southern Rock

Space Rock

Spiritual Rock
Christian Rock

Surf Rock

The Adult Arena

Rock-n-Roll Oldies

Seasonal /Holiday
Christmas
Contemporary
International
Traditional
Hanukkah
Other Holidays

Doo-Wop
Motown
New Jack R&B

Rhythm and Blues

Soul
Black-Eyed Soul
Deep Soul
Philly Soul
Pop Soul
Quiet Storm
Retro Soul
Soul Country
Southern Soul
Swamp Soul

North American
Northern Europe
Oceania

old dance music
Scandinavian
South Pacific
World Pacific
World Beat
World Fusion
World Traditions
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B Pieces in the music database

The following lists the names of the artists and pieces in the music database in
detail. Pieces are divided according to the annotated first-level genres. The pieces
used in the listening experiment are also indicated.

List notation: <artist> - <title> [second-level genre] (G1 or G2 according to the
test group the piece was assigned in the listening experiment)

Classical

- Deck the halls, (G2)

- Etude, op.25 No.9 in G flat magor, [Solo Instruments],
(G2)

Academy chamber ensemble - Sonata in A-dur op.5/1:
allegro, [chamber music]

Academy chamber ensemble - Sonata in A-dur op.5/1:
andante-adagio, [chamber music]

Academy chamber ensemble - Sonata in A-dur op.5/1:
gavotte (allegro), [chamber music], (G1)

Academy chamber ensemble - Sonata in A-dur op.5/1:
larghetto - allegro, [chamber music]

Academy chamber ensemble - Sonata in e minor: alle-
gro, [chamber music]

Academy chamber ensemble - Sonata in e minor: alle-
mande (andante allegro), [chamber music]

Academy chamber ensemble - Sonata in e minor: an-
dante larghetto - adagio, [chamber music]

Academy chamber ensemble - Sonata in e minor: gavotte
(allegro), [chamber music]

Academy chamber ensemble - Sonata in e minor: ron-
deau, [chamber music]

Academy chamber ensemble - Sonata in e minor: sara-
bande (largo assai), [chamber music], (G2)

Agustin Anievas - Etude in C minor ( "Revolutionary”),
[solo instruments]

Armenia Philharmonic orchestra (conducted by Loris
Tseknavorian - The Sabre dance

Avanti-kvartetti - Jousikvartetto, [classical general]
Camarata Labacensis - Fine kleine nachtmusik:
menuetto, [chamber music]

Choralschola der Wiener Hofburgkapelle - Kyrie Eleison,
[vocal], (G2)

City of London Sinfonia - Suite in F major: Menuet,
[classical general]

City of London Sinfonia, conductor Richard Hickox -
Suite in F magor: Air, [classical general]

Consortium classicum - Introduktion und elegie fir klar-
inette, zwei violinen, viola und violoncello: rondo: alle-
gro scherzando

Covent Garden royal opera choir and orchestra - Hepre-
alaisten orjien kuoro, [vocal], (G2)

Dallas brass - Carol of the bells, (G2)

Daniel Barenboim - Lieder ohne worte op.19, no.2 a-
moll: andante espressivo, [solo instruments]

Daniel Barenboim - Lieder ohne worte op.19, no.5 fis-
moll: piano agitato, [solo instruments]

Daniel Barenboim - Lieder ohne worte op.30, no.6 fis-
moll: allegretto tranguillo, [solo instruments]

Daniel Barenboim - Lieder ohne worte op.67, no.2 fis-
moll: allegro leggiero, [solo instruments]

Das salonorchester Colln - Albumblatt, [chamber music]
Das salonorchester Colln - Notturno no.3, Liebestraum,
[chamber music]

Das salonorchester Colln - Ungarischer tanz no.5, [cham-
ber music]

Dubravka Tomsic - Italian concert F major: Andante
Dubravka Tomsic - Sonate no.14 C sharp minor op27
no 2: adagio sostenuto (Moonlight sonata), [solo instru-
ments]

Erkki Rautio (cello), Izumi Tateno (piano) - Berceuse,
[solo instruments], (G1)

Eva Maros - Pavana con su glosa, [classical general]
Gudrun Derler, Barbara Hélzl - Der Fischer, [vocal],
(G1)

Gybrgy Geiger (trumpet), Eva Maros (harp) - Le Coucou
Hamburg chamber orchestra - The four seasons concerto
op.8 no.1: Spring, allegro

Hamburg chamber orchestra - The four seasons concerto
op.8 no.2: summer, presto

Hamburg chamber orchestra - The four seasons concerto
op.8 no.3: autumn allegro

Hamburg chamber orchestra - The four seasons concerto
op.8 no.4: winter, allegro non molto

Hamburg radio symphony - Ouverture Fidelio, op.72
Hans Fagius - Toccata in D minor, [classical general]
Hungarian state opera chamber orchestra, solo trumpet
Ede Inhoff - Sonata no.10 for Trumpet and strings: al-
legro/presto, [classical general]

1 Salonisti - Kuolema op.44: Valse Triste, [chamber mu-
sic], (G1)

I Salonisti - Préludes: La plus que lente, [chamber music]
I Salonisti - Serenata, [chamber music|

Ida Czernecka - Mazurka no.47 in a minor op.68 no.2,
[solo instruments]

Ida Czernecka - Nocturne no.1 in Bb minor op.9 nr.1,
[solo instruments], (G2)

Ida Czernecka - Prelude no.3 in Db major op.28, Rain-
drops, [solo instruments]

Ida Czernecka - Waltz no.12 in f minor op.70 nr.2, [solo
instruments], (G1)
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B Pieces in the

music database

John Ogdon, Brenda Lucas - En bateau, [classical gen-
eral]

Kamariorkesteri Vox Artis, conductor Lev Markiz - Sere-
nade for strings in C magjor, op.48: II Walzer (moderato
tempo di valse), [chamber music]

Lars Henning Lie, Barbara Holzl - Zur Johannisnacht,
[vocal], (G1)

London concert orchestra, conducted by Sir Anthony
Arthur - Swanlake: Hungarian dance - Czardas
London concert orchestra, conducted by Sir Anthony
Arthur - Swanlake: Scene

London concert orchestra, conducted by Sir Anthony
Arthur - Swanlake: Spanish dance

London festival orchestra - Bolero

London philharmonic orchestra - Die Zauberfléte: ou-
verture, [symphonic], (G1)

London philharmonic orchestra - Symphony no.41 in C
magor, Jupiter: Allegro, [symphonic]

London philharmonic orchestra - The marriage of Fi-
garo: ouverture, [symphonic]

London symphony orchestra - Faust (ballet): adagio
Marian Lapsansky, Peter Toperczer, Czechoslovak Radio
Symphony Orchestra - Carnival of the animals, [sym-
phonic]

Marian Lapsansky, Peter Toperczer, Czechoslovak Radio
Symphony Orchestra - Peter and the Wolf, [symphonic],
(G2)

Maridn Lapsansky (solo), Slovak Philharmonic Orches-
tra - Piano Concerto in A minor: Allegro vivace
Mozart Festival Orchestra, conductor Alberto Lizzio,
horn solo Josef Dokupil - Horn concerto nr.1 D major:
Allegro, (G1)

Mozart Festival Orchestra, conductor Alberto Lizzio,
horn solo Josef Dokupil - Horn concerto nr.2 Es Major
Andante

Munich chamber ensemble - Brandenburg concerto no.2
F magor : Allegro, [chamber music]

Munich chamber orchestra - Brandenburg concerto no.5
D major: Affettuoso, [chamber music]

New York philharmonic orchestra conducted by Bruno
Walter - Hungarian dance number 1 in G minor

New York trumpet ensemble - Rondeau fron Symphonies
de fanfares, [classical general]

New philharmonia orchestra London - Symphony no.6,
Pathetique, in Bb minor op.74: Finale. Adagio lamen-
toso, [symphonic]

Philharmonia quartett Berlin, soloist Dieter Klocker -
Quintett Es-dur: allegro moderato

Philharmonic ensemble pro musica - Peer Gynt suite
no.1 op.46: Anitra’s dance

Philharmonic ensemble pro musica - Peer Gynt suite
no.1 op.46: Death of ase

Philharmonic ensemble pro musica - Peer Gynt suite
no.2 op.55: Solveij’s song

Philharmonic ensemble pro musica - Peer gynt suite no.1

Electronic/dance

666 - Bomba, [dance]

Aphex Twin - Ageispolis, [ambient)]

Aphex Twin - Heliosphan, [ambient]

Aphex Twin - Pulsewidth, [ambient], (G2)
Armand van Helden - Alienz, [house]

Armand van Helden - Mother earth, [house]
Armand van Helden - The boogie monster, [house]
Art of Noise - Something always happens, [break-
beat/breaks/drum’n’bass], (G1)

Artful dodger feat.Craig David - Re-rewind, (G2)
Artful dodger feat.Lynn Eden - Outrageous

op.46: In the hall of the mountain king

Philharmonica Hungarica, conductor Richard P. Kapp -
La Damnation de Faust: Hungarian dance

Piffaro - Ave regina caelorum, [classical general], (G1)
Piffaro - Entre du fol, [classical general]

Piffaro - Gaillarde, [classical general]

Piffaro - J’ay pris amours, [classical general]

Piffaro - Passe et medio & reprise, [classical general]
Piffaro - Pavane&Gaillarde “la Dona”, [classical general]
Pro musica antiqua - Fireworks music, Concerto grosso
n0.26 D magjor: La paiz, [chamber music]

Radio symphony orchestra Ljubljana - Symphony no.5in
C major: allegro con brio

Radio symphony orchestra Ljubljana - Symphony no.8
Bb minor, The unfinished symphony: allegro moderato,
[symphonic], (G2)

Royal Danish symphony orchestra - Hungarian march
Royal Danish symphony orchestra - Tales of Hoffman:
barcarole

Rudolf Heinemann - Sonate 1 f-moll: allegro moderato
e Serioso

Rudolf Heinemann - Sonate 2 c-moll: adagio

Rudolf Heinemann - Sonate 4 B-dur: allegretto

Rudolf Heinemann - Sonate 5 D-dur: allegro maestoso
Soile Viitakoski (vocals), Marita Viitasalo (piano) -
Solveig’s song, [vocal]

Symphonic orchestra Berlin, conductor Kurt Wéss - Love
to the 3 oranges: march

Siiddeutsche philharmonic - A midsummer night’s
dream. Dance of the clowns, [symphonic]

Siiddeutsche philharmonic - A midsummer mnight’s
dream. Notturno. Con moto tranquillo, [symphonic],
(G1)

Siiddeutsche philharmonic - A midsummer night’s
dream. Wedding march, [symphonic]

Siidwestdeutsches kammerorchester - Sarabande op.93,
[chamber music], (G2)

Stidwestdeutsches kammerorchester - Serenade nr.2 F-
dur fiir streichorchester:Allegro moderato, [chamber mu-
sic]

Siidwestdeutsches kammerorchester - Zwei elegische
melodien nach gedichten von A.O.Vinge fiir Streichorch-
ester:Letzter Friihling, [chamber music]

The Candomino Choir - Soi Kiitokseksi Luojan , [vocal]
The New York trumpet ensemble - Canzon no.1, 1615,
[classical general]

The New York trumpet ensemble - Sonata @ 7, [classical
general]

The New York trumpet ensemble - Toccata, [classical
general]

The Philharmonia orchestra - Concerto for trumpet and
orchestra II-nocturne andantino , [classical general]
The Philharmonia orchestra - Concerto no.2 for trum-
pet: II-grave, [classical general]

The River Brass Band - Muistojen bulevardi

Artful dodger feat.MC Alistair - R u ready
Bliimchen - Schmetterlinge, [techno/trance]
Bliimchen - Ubermorgenland, [techno/trance]
Chain reaction - Dance Freak, [dance], (G1)
Chemical Brothers - Let forever be,
beat/breaks/drum’n’bass|, (G1)

Daft punk - Harder, better, faster, stronger, [house],
(G2)

Daft punk - Voyager, [house], (G1)

Deisix - Scream bloody core, [industrial]

Delerium - Silence (DJ Tiesto mix), [techno/trance]
Dune - Can’t stop raving, [techno/trance]

[break-
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Energy 52 - Café del Mar, [techno/trance]

Fatboy Slim - Star 69, [breakbeat/breaks/drum’n’bass]
Gloria Gaynor - I will survive, [dance]

Goldie - Angel, [breakbeat/breaks/drum’n’bass]

Hardy Hard - Everybody shake your body (electro mizx),
[techno/trance]

Hyper - Noise alert, [house]

Hypnotist - Live in Berlin, [techno/trance], (G1)

Jeff Mills - The Bells

KC and the sunshine band - That’s the way (I like it),
[dance], (G1)

Les Rythmes Digitales - Jacques your body (make you
sweat), [techno/trance], (G1)

Les Rythmes Digitales - Music makes you lose control,
[house], (G2)

Marusha - Somewhere over the rainbow, [techno/trance]
Members of Mayday - The day X, [techno/trance]
Moodymann - Long hot sexy nights, [house], (G1)

Mr. Velcro fastener - Phlegmatic, [techno/trance]

Mr. Velcro fastener - Real robots don’t die,
[techno/trance]

Nebulla II - Peacemakers, [techno/trance], (G2)
Neuroactive - Inside your world, [industrial]
Neuroactive - Space divider, [industrial], (G2)

New Order - FEverything’s gone green (Advent remiz),
[industrial]

Orbital - Forever, [ambient], (G1)

Orbital - Science friction, [ambient]

Pansoul - Ezio, [house]

Paradise 3001 - Long distance call to heaven, [house]
Photek - Minotaur, [breakbeat/breaks/drum’n’bass|
Photek - Smoke rings, [breakbeat/breaks/drum’n’bass]

Hip Hop

Beastie boys - No sleep till Brooklyn

Beastie boys - Rhymin & stealin

Busta Rhymes - One, (G1)

Busta Rhymes - Turn it up (Remiz) Fire it up, (G2)
Busta Rhymes - When disaster strikes, (G2)

Cameo - She’s strange (12” rap version), [electric funk],
(G2)

Ceebrolistics - Jalat maassa, (G1)

Ceebrolistics - aie/i try, (G1)

Coolio - 2 minutes € 21 seconds of funk

Coolio - Hit ’em

Coolio - The devil is dope

Cypress Hill - How I could just kill a man, [gangsta rap|,
(G2)

Dead Prez - Be healthy, (G2)

Dead Prez - Mind sez, (G2)

Dr.Dre feat. Hittman, Kurupt, Nate Dogg, Six Two -
Xzplosive

Dr.Dre feat. Snoop Dogg - The next episode

Eminem - Stan

Eminem - The way I am

Jazz/Blues

Abraham Laboriel - Dear friends, [jazz|, (G1)
Abraham Laboriel - Look at me, [jazz]
Abraham Laboriel - My joy is you, [jazz]
Ahmad Jamal - Autumn in New York, [jazz]
Ahmad Jamal - The girl next door, [jazz]

Al DiMeola - Dark eye tango, [jazz], (G2)
Al DiMeola - Mediterranean sundance, [jazz)
Alex Welsh - Maple leaf rag, [jazz]

Antero Jakoila - Pieni tulitikkutytts, [jazz]
B.B King - How blue can you get, [blues]
B.B King - The thrill is gone, [blues]

Plastikman - Konception, [techno/trance]

Plastikman - Marbles, [techno/trance]

Prodigy - Charly, [techno/trance]

Queen Yahna - Ain’t it time, [dance], (G2)

RMB - Spring, [techno/trance]

Richard D. James - Fingerbib

Sash! feat.Rodriguez - Ecuador, [dance]

Scooter - Hands up!, [techno/trance]

Scooter - How much is the fish, [techno/trance]

Sirius B feat. Afrika Bambaataa and Hardy Hard - If
you Techolectro, [techno/trance]
Skylab - The trip (Roni
beat/breaks/drum’n’bass]
Stardust - Music sounds better with you
Sunbeam - Outside world, [techno/trance]

Size miz), [break-

Sunship - The Original Sun, [breakbeat/breaks/drum’n’bass],

(G2)
Sunship - The Unseen, [breakbeat/breaks/drum’n’bass|,
(G2)

TDR - Squelch, [house]

Terminal choice - Totes Fleisch, [industrial]

The Jacksons - Can you feel it, [dance]

The Weather Girls - It’s raining men, [dance]

Tricky - Contradictive, [breakbeat/breaks/drum’n’bass]
Tricky - Hot like a sauna, [breakbeat/breaks/drum’n’bass]
Tufdan - Probe (the Green Nuns of Revolution Mix),
[techno/trance]

Ultra Naté - Free, [dance]

William Orbit - Cavalleria rusticana, [ambient], (G1)
William Orbit - L’Inverno, [ambient], (G2)

Grunge is dead (Butch Vig) / M.O.P. - How bout some
hardcore, [rap-rock], (G2)

Jay-Z - Hard knock life

Jay-Z feat.DMX - Money, cash, hoes

Jay-Z feat.Foxy Brown - Paper chase, (G1)

Jermaine Dupri and Mariah Carey - Sweetheart
Jermaine Dupri feat. Jay-Z - Money ain’t a thing, (G2)
Missy "Misdemeanor” Elliott - She’s a bitch

Petter - En resa, (G1)

Petter - Minnen, (G2)

Petter feat.Kaah - Ut och in pa mig sjilv

Public enemy - Crayola, (G1)

Public enemy - Last mass of the caballeros, (G1)

Run DMC - What’s it all about

Run DMC - Word is born, (G1)

Static-X / Dead Prez - Hip hop

System of a down/Wu-Tang clan - Shame, [gangsta rap]|,
(G1)

The Roots - The next movement

The Roots feat. Erykah Badu - You got me, (G2)
Wyclef Jean - Gone till November, (G1)

B.B.King - Hummingbird, [blues]

Billy Boy Arnold - Don’t stay out all night, [blues]
Billy Boy Arnold - How long can this go on?, [blues]
Billy Boy Arnold - Lowdown thing or two, [blues]
Bob Wilber and Antti Sarpila - Lester’s bounce, [jazz]
Bob Wilber and Antti Sarpila - Moon song, [jazz)
Bob Wilber and Antti Sarpila - Rent party blues, |jazz]
Brian Green’s dixie kings - Tiger rag, [jazz]

Chick Corea elektric band - Child’s play, [jazz]

Chick Corea elektric band - Inside out, [jazz]

Claudio Roditi - Rua Dona Margarida, [jazz]
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Dan Stewart - New Orleans blues, [blues]

Dave Grusin - Old bones, [jazz]

Dave Grusin - Punta del soul, [jazz)

Dizzy Gillespie and Arturo Sandoval - Rimsky, [jazz]
Dizzy Gillespie and Arturo Sandoval - Wheatleigh Hall,
[jazz]

Don Byron - Charley’s Prelude, [jazz]

Don Byron - Frasquita serenade, [jazz]

Gary Moore - I loved another woman, [blues]

Gary Moore - The supernatural, [blues], (G2)

George Gee and the jump, jive and wailers - 720 in the
books!, [jazz], (G2)

George Gee and the jump, jive and wailers - Buzzin’
baby, [jazz]

Glenn Miller - In the mood, [jazz]

Glenn Miller - Over the rainbow, [jazz)

Headhunters - Frankie and Kevin, [jazz], (G2)
Headhunters - Skank it, [jazz]

Herbie Hancock - Youve got it bad girl, [jazz]

Hilton Ruiz - Something grand, |jazz]

Howlin’ Wolf - Back door man, [blues]

Humphrey Lyttleton - Blacké blue, [jazz]

James Cotton - Straighten up baby, [blues], (G1)
Jimmy Johnson - Black Night, [blues]

Jimmy Johnson - My baby by my side, [blues]

John Lee Hooker - Ground hog blues, [blues]

John Lee Hooker - I love you baby, [blues]

Johnny Adams - Neither one of us (wants to be the first
to say goodbye), [blues]

Johnny Adams - Room with a view, [blues], (G2)
Johnny Copeland - Love song, [blues]

Johnny Copeland - San Antone, [blues|, (G2)

Lars Edegran Orchestra & New Orleans Jazz Ladies -
Panama, [jazz)

Lars Edegran orchestra and the New Orleans jazz ladies
- Oh papa, |jazz]

Lee Ritenour - Starbright, [jazz]

Lee Ritenour - Tush

Little Jimmy King & the Memphins soul survivors - Wild
woman, [blues]

Memphis Slim - Really got the blues, [blues]

Memphis Slim - Tiajuana, [blues], (G1)

Miles Davis - "Round midnight, [jazz]

Miles Davis - Human nature, [jazz], (G2)

Rock/Pop

Abba - Lay all your love on me, [pop]

Abba - S.0.S, [pop]

Abba - Waterloo, [pop]

Beatles - Love me do, [rock]

Beatles - Misery, [rock]

BeeGees - Alone, [rock]

BeeGees - Closer than close, [rock]

BeeGees - Still waters run deep, [rock]

Benitez - Mariposa (part 1), [rock]

Black sugar - Vigjecito, [rock]

Bob Marley - Sun is shining, [pop]

Boo Radleys - Lazarus, [rock]

Boo Radleys - Leaves and sand, [rock]

Boo Radleys - Upon 9th and Fairchild, [rock]

Boris Gardiner - I Wanna Wake Up With You, [pop]
Britney Spears - Lucky, [pop]

Britney Spears - Oops! I did it again, [pop]

Béla Fleck and the Fleckstones - Cheeseballs in Cow-
town, [country]

Béla Fleck and the Fleckstones - Lochs of dread, [coun-
try], (G2)

Béla Fleck and the Fleckstones - Shubbee’s doobie, [coun-
tryl, (G1)

Miles Davis - Seven steps to heaven, [jazz]

Miles Davis - So what, [jazz]

Miles Davis - Someday my prince will come, [jazz)
Miles Davis - Time after time, [jazz)

Muddy Waters - Baby please don’t go, [blues]

Muddy Waters - Forty days and forty nights, [blues|,
(G2)

Muska Babitzin - Cry your heart out, [blues]

Nirpes skolmusikkar-Narpes youth band - Malaguena,
[jazz]

Narpes skolmusikkar-Néarpes youth band - The pink pan-
ther, [jazz]

Narpes skolmusikkar-Nérpes youth band - Watermelon
man, [jazz], (G2)

Paco de Lucia - Chanela, [jazz]

Paco de Lucia - Solo quiero caminar, [jazz]

Paco de Lucia - Zyryab, [jazz]

Pat Metheny group - Follow me, [jazz]

Pat Metheny group - Too soon tomorrow, [jazz]

Pelle Miljoona - 13 bar blues

Pepe Ahlqvist and Jarkka Rissanen - Bad, bad whiskey,
[blues], (G2)

Pepe Ahlgvist and Jarkka Rissanen - Sip of tequila,
[blues]

Rory Block - The spirit returns, [blues], (G1)

Sanne - Where blue begins, [blues], (G1)

Spyro Gyra - Heart of the night, [jazz]

Spyro Gyra - Surrender, [jazz)

Spyro Gyra - Westwood moon, [jazz], (G1)

Terry Lighfoot - Summertime, [jazz|

The Brecker brothers - Sponge, |jazz]

The Brecker brothers - Squish, [jazz]

The Dave Weckl band - Mud sauce, [jazz)

The Dave Weckl band - Song for Claire, [jazz], (G1)
The Dave Weckl band - The zone, [jazz]

The Dutch swing college band - Savoy blues, [jazz)

The Erstrand-Lind quartet - Avalon, [jazz], (G1)

The Erstrand-Lind quartet - I got thythm, [jazz], (G1)
The Jeff Healey band - Roadhouse blues, [blues], (G1)
Turner Parrish - Ain’t gonna be your dog no more, [blues]
Weather report - Birdland, [jazz]

Weather report - Harlequin, [jazz)

Willie Harris - West side blues, [blues]

Béla Fleck and the Fleckstones - Stomping grounds,
[country]

CMX - Palvonnan eleitd, [rock], (G1)

CMX - Rautakantele, [rock]

Celine Dion - My heart will go on, [pop], (G2)

Celine Dion - River deep, mountain high, [pop]

Chango - Mira pa’ca, [rock]

Chicago - 25 or 6 to 4, [rock]

Chicago - Colour my world, [rock]

Chicago - Saturday in the park, [rock]

Children of Bodom - Towards Dead End, [metal], (G1)
Cradle of filth - A gothic romance (red roses for the
devil’s whore), [metal], (G2)

Cradle of filth - Beauty slept in Sodom, [metal]

Cradle of filth - Heaven torn asunder, [metal], (G2)
Cream - Sunshine of your love, [rock]

Creedence clearwater revival - (wish I could) Hideaway,
[rock]

Creedence clearwater revival - Have you ever seen the
rain, [rock]

Creedence clearwater revival - It’s just a thought, [rock]
Crosby, Stills, Nash &Young - Dream for him, [country]
Crosby, Stills, Nash &Young - Heartland, [country]
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Crosby, Stills, Nash &Young - Looking forward, [country]
Depeche Mode - It’s no good, [pop]

Depeche Mode - Personal Jesus, [pop]

Depeche mode - Enjoy the silence, [pop]

Desmond Dekker - You Can Get It If You Really Want,
[pop]

Dire straits - Money for nothing, [rock]

Dire straits - Ride across the river, [rock]

Eagles - Hotel California, [rock]

Eagles - Take it away, [rock]

Faith No More - Epic, [rock]

Frank Sinatra - Bad, bad Leroy Brown, [easy listening]
Frank Sinatra - Strangers in the night, [easy listening]
Frank Sinatra and Nancy Sinatra - Somethin’ stupid,
[easy listening], (G1)

Gladys Knight - You, [pop]

Gladys Knight and the Pips - It’s gonna take all our
lO’U@, [pop]

Gladys Knight and the Pips - Love overboard, [pop]
HIM - Bury Me Deep Inside Your Arms, [metal]

Inner circle - Mary Mary, [pop]

Inner circle - Standing firm, [pop]

Inner circle - We ’a’ rockers, [pop]

Jane’s addiction - Been caught stealing, [rock]

Jane’s addiction - Jane says, [rock]

Jane’s addiction - Kettle whistle, [rock]

Jesus Jones - The devil you know, [rock]

Jesus Jones - Your crusade, [alternative], (G1)

Jimi Hendrix - Machine gun, [rock]

Jimi Hendrix - Voodoo child, [rock]

Joe Cocker - That’s all I need to know, [rock]

Joe Cocker - That’s the way her love is, [rock]

Joe Cocker - Tonight, [rock]

Kenny Rogers - Ain’t no sunshine, [country], (G2)
Kenny Rogers - Love don’t live here anymore, [country]
Kenny Rogers - Three times a lady, [country], (G1)
Kiss - Journey of 1,000 years, [rock]

Kiss - Psycho circus, [rock], (G1)

Kiss - Within, [rock]

Korn - Got the Life, [rock]

Life of agony - Drained, [metal]

Life of agony - Other side of the river, [metal]

Lynyrd Skynyrd - Free bird, [rock]

Lynyrd Skynyrd - Swamp music, [rock]

Soul/RnB /Funk

Al Green - Let’s stay together, [soul], (G2)

Al Green - Tired of being alone, [soul], (G2)

All-4-One - I turn to you, [rnb]

Cameo - I just want to be, [funk], (G1)

Cassandra Wilson - Last train to Clarksville, [gospel]
Cassandra Wilson - Memphis, [gospel]

D’Angelo - I found my smile again, [rnb], (G1)
Defunkt - Dogon A.D., [funk]

Defunkt - Without justice, [funk]

Dr.Funkenstein and the brides of Funkenstein - Rat
kissed the cat, [funk], (G1)

Harry van Walls - Tee nah nah, [rhythm and blues]
Herbie Hancock - Watermelon man, [funk]

James Brown - It’s time to love (put a little love in your
heart), [soul]

James Brown - Show me, [soul]

James Brown - Standing on higher ground, [soul], (G1)
Joe Morris - The applejack, [rhythm and blues|, (G1)
Joe Turner - Sweet sizteen, [thythm and blues]
Johnnie Taylor - Lady my whole world is you, [soul]
Kool & the Gang - Funky stuff, [funk], (G2)

Kool & the Gang - Hollywood swinging, [funk], (G2)
Kool & the Gang - Jungle boogie, [funk]

Madonna - Into the groove, [pop]

Madonna - Like a virgin, [pop]

Malo - Street man, [rock]

Mariah Carey - My all, [pop]

Marilyn Manson - Sweet Dreams, [metal]

Marisa Monte - Danca da solidao, [pop], (G2)
Marisa Monte - Segue o seco, [pop]

Michael Jackson - Bad, [pop], (G1)

Michael Jackson - Black or white, [pop], (G1)
Paula Abdul - Opposites Attract, [pop]

Pet Shop Boys - Always on my mind, [pop]

Pet Shop Boys - Being boring, [pop]

Red Hot Chili Peppers - Parallel Universe, [rock]
Robert Wells - Bumble-bee boogie

Robert Wells - Rhapsody in rock IV

Robert Wells - Spanish rapsody, (G2)

Santana - Black magic woman, [rock]

Santana - She’s not there, [rock], (G1)

Sapo - Been had, [rock]

Saxon - Dogs of war, [metal]

Saxon - The great white buffalo, [metal]

Shania Twain - Man! I feel like a woman, [country]
Shania Twain - You’re still the one, [country]
Skunk Anansie - Brazen (Weep), [rock]
Steppenwolf - Magic carpet ride

Stone - Empty corner, [metal]

Stone - Mad hatter’s den, [metal]

Suede - Trash, [pop]

The Golden Nightingale Orchestra - Annie’s song, [easy
listening]

The Golden Nightingale Orchestra - Love story, [easy
listening], (G2)

The Golden Nightingale Orchestra - The sound of si-
lence, [easy listening]

The Move - Flowers in the rain, [rock], (G2)
The Police - It’s alright for you, [rock]

The Police - Message in a bottle, (G2)

Travis - Turn, [rock]

U2 - Last night on earth, [rock]

U2 - Staring at the sun, [rock]

Zucchero - Eppure non t’amo, [rock]

Zucchero - Menta e Rosmarino, [rock]

Zucchero - Senza una donna, [rock]

Kool & the Gang - Spirit of the boogie, [funk]
Latimore - Bad risk, [soul]

Lauryn Hill - I used to love him, [rnb]

Lauryn Hill - Lost ones, [rnb]

Lauryn Hill - To Zion, [rnb], (G1)

Lonnie Green - I didn’t know that funk was loaded (count
Funkula), [funk], (G1)

Lucy Pearl - Don’t mess with my man, [rnb], (G2)
Lucy Pearl - Everyday, [rnb]

Lucy Pearl - Lucy Pearl’s way, [rnb]

Manu Dibango - Big blow, [funk], (G2)

McKinley Mitchell - The end of the rainbow, [soul]
Monica - For you I will, [rnb], (G2)

Oslo Gospel Choir - Nearer my god to thee, [gospel]
Oslo Gospel Choir - Open up my heart, [gospel]
R.Kelly - I believe I can fly, [rnb]

Ruth Brown - Teardrops from my eyes, [rhythm and
blues]

Sade - Kiss of life, [soul], (G1)

Sade - No Ordinary Love, [soul]

Salt 'n Pepa - Shoop, [rnb], (G1)

Salt 'n Pepa feat.En Vogue - Whatta man, [rnb]
Staple singers - Heavy makes you happy, [soul]

99



B Pieces in the music database

Staple singers - Long walk to D.C., [soul]

Staple singers - Respect yourself, [soul]

Stevie Wonder - For your love, [soul]

Stevie Wonder - Superstition, [soul]

Stevie Wonder - You are the sunshine of my life, [soul]
Stevie Wonder - Master blaster, [soul]

Take 6 - Fly away, [gospel], (G2)

World /Folk

Andras Adorjan and Jorge de la Vida - Jalousie, [latin
american]

Antero Jakoila - El bandolero, [latin american]

Antero Jakoila - El choclo, [latin american]

Antuna - The heart’s cry, [folk]

Astrud Gilberto, Stan Getz - Corcovado, [latin american]
Brendan Larrissey - Mist on the mountain/Three little
drummers, [folk]

Clannad - Coinleach ghlas an fhémhair, [folk]

Davy Spillane, The riverdance orchestra - Caoineadh ci
chulain, [folk]

Take 6 - Mary, [gospel]

The Rwenzori’s - Handsome boy (e wara), [funk]

Toni Braxton - Let it flow, [rnb], (G2)

Toni Braxton - There’s no me without you, [rnb], (G2)
Toni Braxton - Un-break my heart, [rnb], (G1)
Vecchio - Nsambei, [funk]

Horacio Salgan and Ubaldo de Lio - El Choclo, [latin
american)

Joe Derrane with Carl Hession - Humours of Lis-
sadell/Music in the glenn/ Johnson’s, [folk]
Joni Mitchell - For free, [folk]

Joni Mitchell - Ladies of the canyon, [folk]
Joni Mitchell - Rainy night house, [folk]
Roberto Goyeneche and Nestor Marconi -
Florida, [latin american]

Stan Getz and Joao Gilberto - Desafinado, [latin ameri-
can)

Walter Wanderley - O barquinho, [latin american]

Ventanita
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