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ABSTRACT 

This paper studies acoustic modeling of non-speech 
audio using hidden Markov models. Simulation results 
are presented in two different application areas: audio-
based context awareness and music classification, the 
latter focusing on recognition of musical genres and 
instruments. Two training methods are evaluated: 
conventional maximum likelihood estimation using the 
Baum-Welch algorithm, and discriminative training, 
which is expected to improve the recognition accuracy 
on models with a small number of component densities 
in state distributions. Our approach is unsupervised in the 
sense that we do not know what are the underlying 
acoustic classes that are modeled with different HMM 
states. In addition to reporting the achieved recognition 
results, analyses are made to study what properties of 
sound signals are captured by the states. 

1. INTRODUCTION 

The aim of this paper is to evaluate the usefulness of 
hidden Markov models and discriminative training in 
non-speech audio classification tasks. We consider two 
different application areas: audio-based context 
awareness and music classification. In the former, the 
aim is to decide the context or environment based on 
audio information only. The potential applications in this 
field include e.g. intelligent wearable devices that adjust 
the mode of operation according to the context of the 
user, such as a meeting or a noisy street. In music 
classification, two subtasks are considered; recognition 
of the musical genre and musical instruments. Both 
components are needed for example in a content-based 
music indexing and retrieval system. 

In automatic speech recognition, HMMs are the tool 
most commonly used to model speech characteristics. In 
other audio content analysis applications they are being 
used to an increasing degree. In speech recognition and 
text-dependent speaker recognition, supervised acoustic 
models are typically used [1], which means that we have 
e.g. phonetically labeled training sequences for each 
class, and the complete HMM for the class is constructed 
by concatenating the trained sub-word models. 

In this paper, the focus is on unsupervised acoustic 
modeling, where the underlying acoustic classes are not 
known. It is not clear what the acoustic classes should be 

in music or in environmental audio. Thus, the 
unsupervised approach is attractive as the first attempt. 
This is analogous to the text-independent task in speaker 
identification. A similar approach has been taken in the 
MPEG-7 standard for the description of general sound 
similarity [2]. They model each class with a continuous 
density HMM trained with maximum a posteriori 
estimation. 

Despite the diverse nature of our target applications, 
the use of HMMs to model the feature statistics has 
proved out to be a well-performing approach. Their use 
is motivated by at least two aspects. First, at least in 
theory there are no limitations to the class of probability 
distributions representable by HMMs, given enough 
hidden states and suitable state densities [3]. Second, in 
classification tasks we do not even need to accurately 
model the class-conditional densities; for classification 
purposes efficient modeling of class boundaries is 
sufficient [3]. Thus, even if our model is incapable of 
modeling all the variations in the sound, we can train it to 
focus on the differences between classes using 
discriminative training methods. Due to the highly 
varying material and unsupervised nature of these tasks, 
it is most likely that the acoustic models we are using are 
not able to sufficiently model the observation statistics. 
For these reasons, we propose using discriminative 
training of model parameters instead of conventional 
maximum-likelihood training. 

2. DISCRIMINATIVE TRAINING OF HMMS 

In each of our classification tasks, our acoustic data 
comprises a training set that consists of the recordings 

),...,( 1 ROO=Ο  and their associated class labels 

),...,( 1 RllL = . Depending of the application, L can 
express the context where the recording has been made, 
the musical genre, or the musical instrument playing on 

the musical excerpt r. To be more specific, rO  denotes 
the sequence of feature vectors measured from recording 
r. The purpose of the acoustic models is to represent the 
distribution of feature values in each class in this training 
set.  

2.1. Description of the hidden Markov model 

A continuous-density hidden Markov model (HMM) 
with N states consists of a set of parameters θ that 



comprises the N-by-N transition matrix, the initial state 
distribution, and the weights, means and diagonal 
variances of Gaussian mixture model (GMM) state 
emission densities. The possibility to model sequences of 
states with different statistical properties and transition 
probabilities between them makes intuitively sense in our 
applications, since sounds are dynamic phenomena. For 
instance, one can imagine standing next to a road, where 
cars are passing by. When a car approaches, its sound 
changes in a certain manner, and after it has passed there 
is a clear change in its sound due to the Doppler effect. 
Naturally, when no cars are passing by the sound scene is 
rather quiet. Hopefully, the different states in the model 
are able to capture the different stages, and the statistical 
variation between different roads, cars, and recording 
times is modeled to some extent by the different 
components in the GMM state densities.  

In our baseline system, the HMM parameters are 
iteratively optimized with the Baum-Welch algorithm 
[4]. This algorithm iteratively finds a local maximum of 
the maximum likelihood (ML) objective function 
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where Θ  denotes the entire parameter set of all the 
classes },...,1{ Cc ∈ , and cA  is the subset of [1,R] that 

denotes the recordings from the class c. In the 
recognition phase, an unknown recording O  is classified 
using the maximum a posteriori rule: 
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The needed likelihoods can be efficiently computed 
using the forward-backward algorithm, or approximated 
with the likelihood of the single most likely path given 
by the Viterbi-algorithm. 

2.2. A discriminative training algorithm 

Maximum Likelihood estimation is well justified if the 
observations are distributed according to the assumed 
statistical model. In our applications, it is very unlikely 
that a single HMM could capture all the statistical 
variation of the observations from an arbitrary 
environment or classical music, for instance. Moreover, 
the training databases are much smaller than for example 
the available speech databases, preventing the reliable 
estimation of parameters for complex models with high 
amounts of component densities. In applications where 
computational resources are limited such as context-
awareness targeted for embedded applications, we are 
forced to use models with as few Gaussians as possible, 
since their evaluation poses the computationally most 
demanding step in the recognition phase. In these cases a 
model mismatch occurs and other approaches than ML 
may lead into better recognition results. Discriminative 
training methods such as the maximum mutual 
information (MMI) aim at maximizing the ability to 
distinguish between the observation sequences generated 

by the model of the correct class and those generated by 
models of other classes [4].  

Different discriminative algorithms have been 
proposed in the literature. The algorithm used in this 
paper has been presented just recently, and one of its 
benefits is a straightforward implementation. The 
algorithm was proposed by Ben-Yishai & Burshtein, and 
is based on an approximation of the maximum mutual 
information criterion [5]. Their approximated maximum 
mutual information (AMMI) criterion is: 
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where cB is the set of indices of training recordings that 

were recognized as class c. The set cB  is obtained by 

maximum a posteriori classification performed on the 
training set. The parameter 10 ≤≤ λ  controls the 
“discrimination rate” .  

The prior probabilities )(cp  do not affect the 

maximization of )(ΘJ , thus the maximization is 

equivalent to maximizing the following objective 
functions: 
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for all the classes Cc ≤≤1 . Thus, the parameter set of 
each class can be estimated separately, which leads to a 
straightforward implementation. The authors give the re-
estimation equations for HMM parameters [5]. Due to 
space restrictions, we present only the re-estimation 
equation for the transition probability from state i to 
state j: 
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The state at time t is denoted by tq , and the length of the 

observation sequence rO  is rT . In a general form, for 

each parameter ν  the re-estimation procedure is 
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where )(νN  and )(νG  are accumulators that are 

computed according to the set cA , and )(νDN  and 

)(νDG  are the discriminative accumulators computed 

according to the set cB , obtained by recognition on the 

training set. This discriminative re-estimation can be 
iterated. We used typically 5 iterations, since the 
improvement in recognition accuracy  was only minor 
beyond that. In many cases, using just one iteration 
would be enough since it sometimes gave the greatest 
improvement. The recognition was done only at the first 



iteration, after which the set cB  stayed fixed. The 

following iterations still increase the AMMI objective 
function and increase the accuracy at least in the training 
set. However, continuing iterations too long causes the 
algorithm to overfit the training data, leading into poor 
generalization on unseen test data. Maximum of 5 
iterations with 3.0=λ  was observed to give an 
improvement in most cases without much danger of 
overfitting.   

3. EVALUATION DATABASES 

3.1. Database of environmental recordings 

The database for evaluating the context-awareness 
system consisted of 225 real-world recordings from a 
variety of different contexts, or environments. Typical 
environments include a street, lecture, meeting, family 
home, restaurant, and so on. Most recordings have been 
made with AKG C460B microphones and stored using a 
Sony (TCD-D10) digital audio tape recorder in 16-bit 
and 48 kHz sampling rate format. Some recordings have 
been made using a head and torso simulator. However, in 
our simulations no directional information is used but the 
system is trained and tested using monophonic material 
only. The training set consisted of 155 recordings of 24 
contexts and 70 recordings of 16 contexts were tested. 
160 s was used from each training recording, and testing 
was done with 60 s excerpts from the test recordings. 
The division between training and test sets was done 
randomly. A recording from a certain location was 
always used either for training or testing, but never for 
both, aiming at realistic testing of the generalization 
ability of the system. 

3.2. Musical instrument sound database 

The database for instrument recognition comprises 359 
different musical solo pieces from 15 different 
instruments, which are: trombone, trumpet, bassoon, 
oboe, clarinet, flute, saxophone, church organ, cello, 
double bass, viola, violin, electric guitar, acoustic guitar, 
and piano. Most of the recordings have been collected 
from commercial CD recordings. The material also 
includes recordings made at Tampere University of 
Technology, and MIT Media Lab [6]. The recordings 
were randomly assigned into a training set comprising 
294 recordings and a test set of 65 recordings. When 
there were several musical excerpts from the same CD 
recording, or from the same player with the same 
instrument, all these excerpts were included into either 
set. In this way, care was taken not to allow the system to 
train on any recordings of a certain instrument instance 
recorded in certain conditions which were included in the 
test set. This is important since the generalization across 
recording conditions, players, and instrument instances 
poses the greatest challenge in instrument recognition 
with monophonic material.  

3.3. Music database for genre recognition 

Six musical genres are considered in this study: classical, 
electronic/dance, hip hop/rap, jazz/blues, rock/pop, and 
soul/rhythm&blues/funk. The database comprises a total 
of 493 different musical pieces taken from commercial 
CDs, the number of pieces from each genre varying 
between 37 and 125. Approximately 70 % of the 
recordings were randomly allocated into a training set, 
and testing was performed with the remaining recordings. 
A representative one-minute excerpt was used from each 
recording in both training and testing.   

3.4. Feature extraction 

The databases consist of audio recordings sampled either 
at 44.1 or 48 kHz. The feature extraction stage involves 
transforming the raw input into a representation with a 
lower dimensionality. Mel-frequency cepstral 
coefficients (MFCC) have been found to be a well 
performing feature set in these applications [7][8][9], and 
are used as the front-end parameters in our system. The 
input signal is first pre-emphasized with the FIR filter 

197.01 −− z  to flatten the spectrum. MFCC analysis is 
performed in 20 or 30 ms windowed frames advanced 
every 15 ms. The number of triangular filters spaced 
evenly on the mel-frequency scale was 40. The lowest 
frequency taken into consideration varied between 30-
80Hz depending on the application, and the highest 
frequency was equal to half the sampling rate. The 
number of cepstral coefficients was between 11 and 16 
after the zeroth coefficient was discarded. The features 
can be augmented by appending the time derivatives 
describing the dynamic properties of the cepstrum. For 
derivative approximation we used a 3-point first-order 
polynomial fit. The resulting features were both mean 
and variance normalized. 

4. RESULTS 

4.1. Model initialization 

The Baum-Welch algorithm was used to train the 
baseline HMMs. The number of states (NS) and 
component densities per state (NC) was varied. 
Increasing the number of components in each state was 
obtained by gradually increasing the model order by 
splitting the component with the largest weight until the 
desired order NC was obtained. During training, a 

Figure 1. The two HMM topologies tested in this study. 
The dotted transitions have zero-probability in the left-
right model. 
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straightforward form of regularization was applied by 
adding a small constant to the variance elements falling 
below a predetermined threshold. The state means and 
variances were initialized by k-means clustering the 
training data into as many clusters as there were states in 
the model, and the state means and variances were 
initialized with the estimates computed from the different 
cluster segments. A heuristic minimum duration 
constraint was placed on the initial clustering 
segmentation to encourage longer continuous regions 
than just of a couple of frames. The model topologies 
tested were a fully-connected model, and a left-right 
model with skips. Figure 1 shows these two topologies. 
The dotted lines indicate the zero-probability transitions 
in the left-right model. Note that with two states, these 
two topologies are identical. 

4.2. Studying the segmentation 

To gain insight into the properties of sounds modeled by 
different HMM states it is useful to visually study the 
Viterbi segmentations after training, or in the test stage. 
In Figure 2, a three-state HMM has been trained using a 
recording of the sound next to a road. The top panel 
shows the amplitude of the signal as a function of time. 
The high amplitude peaks correspond to passing cars. 
The bottom panel shows the resulting Viterbi 
segmentation through the three states. The state number 
one models the silent periods when there are no cars 
passing; the second state the transition periods when a 
car is either approaching or getting farther, and the third 
state the period when the car is just passing or is very 
close to the recording place. A similar example with a 
musical sound is depicted in Figure 3. A three-state 
HMM was trained on trumpet recordings, and the 
segmentation is shown for a melody phrase of 15 seconds 
in duration. By listening it was found that state one 
represents high-pitched notes and pauses between notes, 
low-pitched notes are modeled with state three. Most 
interestingly, state two models the initial transients.  
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4.3. Context awareness 

The simulation results for context awareness have been 
presented in [7] and are summarized in Table 1. The 
baseline system with a fully-connected HMM with two 
states and one component per state gave a recognition 
accuracy of 74.7%. Using discriminative training 
improved the accuracy to 77.3%. Increasing the number 
of component densities in state GMMs above one did not 
improve the baseline performance. Also, the 
improvement obtained with discriminative training was 
smaller when the number of components was increased. 
When the topology was left-right with skips, the 
recognition accuracy was 74.5% with a three-state 
model. Discriminative training improved only slightly 
the result which was 75.0%. 

4.4. Instrument recognition 

In instrument recognition, testing was done in adjacent 
200-frame segments with no overlap, which corresponds 
to approximately 3 seconds in time. Table 2 shows the 
results for both training methods and varying model-
topologies and number of states and mixture densities. 
The recognition accuracy gradually increases as the 
number of mixture densities is increased, converging to 
about 70% correct with 6 components and beyond. The 
conditions where discriminative training improved the 
accuracy over the baseline are shown in italics in 
Table 2. Only with very low order models having 2 states 
and 1 or 2 component densities per state a significant 
improvement is observed using discriminative training.  

Table 1. Percentage correct in context awareness using both 
training methods and different model topologies. All models 
have single-Gaussian state densities. 
 

 # states Baum-Welch Discriminative 

NS = 2 74.7 77.3 Fully-
connected NS = 3 73.7 73.7 
Left-right NS = 3  74.5 75.0 

 

Figure 2. The top panel shows the amplitude of a 
recording made next to a road with passing cars. The 
bottom panel shows the Viterbi segmentation through a 
three-state HMM trained using the recording. 

Figure 3. The top panel shows the amplitude of a solo 
melody played with a trumpet. The bottom panel shows 
the Viterbi segmentation through a three-state HMM 
trained for the trumpet class. 



4.5. Musical genre recognition 

Table 3 shows the recognition accuracies in recognition 
of musical genre with varying model topologies and 
training methods. The large enough size of the music 
database makes it possible to show the numbers with 
one-decimal accuracy. It can be seen that discriminative 
training gives an improvement of only a few percentage 
points. However, improvement is observed almost 
consistently across the model orders and topologies 
tested. On the average, the recognizer is not very 
successful, even the best configuration gives less than 
60% correct. However, the acoustic model classifier 
presented here is only a subpart of a more general genre 
recognizer that could utilize for example rhythmic 
information [7]. Thus, the relatively low accuracy 
provided by these models may be sufficient when 
combined with another classifier using different 
information sources. 

5. CONCLUSION 

Discriminative training improved the accuracy obtained 
with hidden Markov models having small number of 
states and component densities in states. With models 
having more complex state densities no improvement 
was observed. This is due to overfitting to the training 
data causing poor generalization to unseen test data. 
Using a low-complexity HMMs as classifier is 
interesting as such in context-awareness systems having 
limited computational resources. For genre recognition, 
HMMs are a useful basic building block for modeling 
acoustic information, and may be augmented with other 
information sources.  

Future work should also consider the supervised 
approach and attempt to model certain phenomena in 
sounds with HMMs, such as notes from musical 
instruments with left-right models. In our unsupervised 
approach there is much variation in the quality of trained 
models due to the clustering initialization, and 
supervision should be used to find better initial estimates 
for model parameters, and to guide the selection of 
model topology. 
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Table 3. Percentage correct in genre recognition for both 
training methods and varying the model topology and 
complexity.  
 

# components NC=1 NC=2 NC=3 NC=4 
# states Baum-Welch 
NS = 3 52.9 53.8 53.8 55.7 
NS = 4 54.3 54.6 55.0 56.8 

 Discriminative 
NS = 3 53.4 56.9 56.1 58.5 

 
 
Fully- 
connected 

NS = 4 56.7 54.4 57.6 59.5 
 Baum-Welch 

NS = 3 52.4 53.7 54.7 55.2 
NS = 4 54.0 55.0 56.2 56.1 

 Discriminative 
NS = 3 54.7 55.5 58.1 58.2 

 
 
Left-right 

NS = 4 55.7 55.9 58.0 57.9 
 

Table 2. Percentage correct in instrument recognition for 
both training methods and varying the model topology and 
complexity.  
 

 # components NC=1 NC=2 NC=3 NC=6 
# states Baum-Welch 
NS = 2 61 65 67 70 
NS = 3 66 68 68 70 

 Discriminative 
NS = 2 66 68 67 71 

 
 
Fully- 
connected 

NS = 3 67 67 68 70 
 Baum-Welch 

NS = 3 67 67 68 69 
 Discriminative 

 
Left-right 

NS = 3 65 68 68 70 
 


