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Abstract. In this work, the feature based on the group delay function
from all-pole models (APGD) is proposed for pitched musical instrument
recognition. Conventionally, the spectrum-related features take into ac-
count merely the magnitude information, whereas the phase is often over-
looked due to the complications related to its interpretation. However,
there is often additional information concealed in the phase, which could
be beneficial for recognition. The APGD is an elegant approach to infer-
ring phase information, which lacks of the issues related to interpreting
the phase and does not require extensive parameter adjustment. Having
shown applicability for speech-related problems, it is now explored in
terms of instrument recognition. The evaluation is performed with var-
ious instrument sets and shows noteworthy absolute accuracy gains of
up to 7% compared to the baseline mel-frequency cepstral coefficients
(MFCCs) case. Combined with the MFCCs and with feature selection,
APGD demonstrates superiority over the baseline with all the evaluated
sets.
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1 Introduction

Musical instrument recognition is one example of the subtopics of music infor-
mation retrieval, and it has been most actively explored since the 1990’s when
the systems aimed at handling small numbers of instruments represented by
isolated notes were already reaching impressive performance scores of 98% [17]
and 100% [16]. During the following years, various systems realising numerous
methods and applied for different numbers of instruments have been developed.
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The recent works on the subject utilise existing classification methods, which
are novel in terms of the given problem (e.g., semi-supervised learning [5] and
applying missing feature approach for polyphonic instrument recognition [11]),
as well as introduce new features (e.g., multiscale MFCCs [26] and amplitude
envelopes of wavelet coefficients [13]). There exists an established set of features
commonly applied for instrument recognition. Depending on whether they treat
audio from the temporal or spectral point of view, these are subcategorised
accordingly.

The temporal features address instrument recognition under the assumption
that the relevant information is within the transient properties of a signal. Such
assumption is perceptually motivated: the attack characteristics are believed to
play crucial role in human recognition of musical instruments [7].

The spectral features employ a different approach. Particularly, those that are
related to the harmonic properties of a sound (e.g., inharmonicity and harmonic
energy skewness) do preserve the important properties of the musical instrument
timbre [1]. The same applies to other spectrum-related features as well, such as
mel-frequency cepstral coefficients (MFCCs). However, being spectrum-based,
these features tend to concentrate only on the magnitude part of the spectrum.

Spectral information is complete only if both magnitude and phase spectra
are specified. Signal processing difficulties, such as wrapping of the phase and
dependency of the phase on the window position, make direct processing of the
phase spectra challenging. A popular solution is to use the group delay function,
which is defined as the negative derivative of the phase spectrum. The group
delay function is well-behaved only if the zeros of the system transfer function
are not close to the unit circle.

One example of overcoming the latter difficulty is by computing the so-called
modified group delay function [24], which has been applied for speech recogni-
tion [15, 24], as well as recently for musical instrument recognition [6]. It has
shown in the case of instrument recognition a comparable performance with
such established features as MFCCs and an up to 5.1% recognition accuracy im-
provement in combination with MFCCs. However, the parameters of the function
need to be adjusted to the specific application scenario, which is computationally
expensive, so a simpler approach is desirable.

This work proposes utilising a more elegant method of acquiring a well-
behaved group delay feature, which is novel in instrument recognition and does
not require as much adjustment of parameters to an application scenario. The
main aspect of this method is to calculate the group delay function from all-
pole models of a signal, formed by linear predictive analysis (later referred to
as APGD, all-pole group delay). While achieving the same goal of overcoming
the irrelevant high amplitude spurious peaks in the group delay function, it
appears more universally applicable and, therefore, beneficial. Previously, this
method has shown to be successful in formant extraction [27] and speaker recog-
nition [25].

The calculation of the APGD feature is proposed for pitched instrument
recognition, either primarily or as a complement to the established MFCCs,



motivated by the fact that additional information relevant in terms of musical
instrument classification is concealed in phase. Its performance is evaluated in
separate note classification scenarios with instrument sets of different sizes.

The paper is organised according to the following structure. Section 2 presents
the motivation for computing group delay as a feature in general and the APGD
version in particular, as well as its calculation procedure. Subsequently, Section 3
introduces the implemented instrument recognition system, which incorporates
APGD calculation as its feature extraction block. Its performance is consecu-
tively evaluated in Section 4. Finally, the conclusions about the applicability of
the feature are drawn along with the future research suggestions in Section 5.

2 Group Delay Function

In this section, firstly, a motivation for utilising phase information for musical
instrument recognition is stated along with the reasoning for computing APGD
in particular. Subsequently, the details of calculation of the group delay function
and its APGD extension are presented.

2.1 Motivation for Musical Instrument Recognition

Phase is often overlooked in many audio processing solutions due to the compli-
cations related to the unwrapping of the phase spectrum. In spite of that, phase
could be highly informative due to its high resolution and ability of indicating
peaks in the magnitude spectrum envelope. In terms of speech-related problems,
these correspond to formants, useful for extracting speech content. There has
been studies [2] showing that phase contributes significantly to speech intelligi-
bility, contrary to the common notion of its perceptual negligibility.

In the musical instrument signals, however, the presence of formants in the
spectrum is not as strong [16], or they are not a factor independent from fun-
damental frequency, in contrast to speech signals. For example, in the spectra
of trombone or clarinet, due to the acoustical change of active volume of their
body during the sound production, the resonances depend on pitch [9, 20].

Nevertheless, a phase-based feature is applicable for instrument recognition
as well. Broadly speaking, while the commonly applied MFCCs feature is capable
of modelling the resonances introduced by the filter of the instrument body, it
neglects the spectral characteristics of the vibrating source, which also play their
role in human perception of musical sounds [10]. Incorporating phase information
attempts to preserve this neglected component.

Furthermore, considering instruments with such resonators as stretched strings
and air columns in pipes, their natural resonances are not perfectly harmonic.
However, due to such phenomenon as mode locking, individual modes of such
instruments are locked into the precise frequency and phase relationships, lead-
ing to repeating waveforms of sustained tones of these instruments. This phe-
nomenon occurs in case certain conditions favouring the effect are met [9]. A
phase-related feature could aid in capturing the presence of this effect.



2.2 Group Delay Function

The group delay function is of a signal x[n] obtained as [3]

τg(ω) = −Im

(
d

dω
log(X(ω))

)
(1)

=
XR(ω)YR(ω) +XI(ω)YI(ω)

|X(ω)|2
, (2)

where X(ω) and Y (ω) are the Fourier transforms of x[n] and y[n], and y[n] =
nx[n]. The advantage of Equation (2) over the conventional way to obtain phase
information is that no explicit unwrapping is needed.

The group delay function is well-behaved only if the zeros of the system
transfer function are not close to the unit circle. The zeros may be introduced by
the excitation source or as a result of short time processing [4,15]. When zeros of
the transfer function are close to the unit circle, the magnitude spectrum exhibits
dips at the corresponding frequency bins. Due to this, the denominator term in
Equation (2) tends to a small value, resulting in a large value of the group delay
function τg(ω). This manifests itself in spurious high amplitude spikes at these
frequencies, masking out the resonance structure in the group delay function.

One way of addressing this issue is by introducing a modification [24] of the
group delay function (MODGDF), which suppresses the zeros of the transfer
function. This is done by replacing the magnitude spectrum X(ω) by its cep-
strally smoothed version S(ω). Two additional parameters are introduced to
control the dynamic range.

Although this has shown to be a reasonable approach, applicable among oth-
ers for musical instrument recognition [6], the presence of the three parameters
that need to be adjusted to an environment does not necessary appear desirable
due to the computational requirements such parameter tuning imposes. Another
way of obtaining a group delay function, which lacks of this complication, is the
group delay function of all-pole models.

2.3 Group Delay Function of All-Pole Models

By modelling a musical instrument with a a source-filter model [19] and assuming
the filter all-pole, the spectrum of the such filter may be approximated with aid of
linear prediction. The latter has been shown to be an efficient tool for the analysis
of sounds of musical instruments, whose transient part is significant in terms of
tone quality, such as piano [23]. Another example where all-pole modelling has
been used for analysis of musical instrument sounds is the modelling of the guitar
body response [18].

Linear prediction is formulated as [21]

H(ω) =
G

1−
∑p

k=1 a(k)e−jωk
. (3)

The coefficients a(k) are determined by the method of least squares in such a
way that the power spectrum of H(ω) matches the power spectrum of the signal



|X(ω)|2. The all-pole group delay function is computed from the phase response
of this filter formed by H(ω).

Figure 1 shows the magnitude spectra and corresponding all-pole group delay
of one frame of a one note produced by piano. One of the fundamental properties
of the group delay function is its high resolution, which makes the formants vis-
ible and contributes additional information to the magnitude spectrum. Indeed,
in the figure, one may observe the clearly emphasised formants in the APGD
plot, not as easily seen in magnitude spectrum, which makes the function helpful
for an instrument classification problem.
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Fig. 1. A frame of a piano note “A0” (MIDI note 21) played in normal playing style
with dynamics forte: its magnitude spectra (DFT and all-pole, upper panel) and a
group delay function, model order 40 (lower panel).

To convert the all-pole group delay function into a feature, a discrete cosine
transform (DCT) is applied. This performs decorrelation, and a certain number
of coefficients are retained, excluding the zeroth. The feature is calculated in
short frames under the assumption of spectral stationariness within their length,
and the Fourier analysis is performed with the aid of DFT. The overal calculation
procedure of APGD, illustrated by a block-diagram in Figure 2, is the following.

1. Perform all-pole modeling on the frame. Obtain the filter coefficients a(k).
2. From the a(k), form the frequency response H(ω) using Equation (3) with
G = 1 (for a simplified representation capturing formant locations).

3. Compute the group delay function by taking the negative derivative of the
phase response of H(ω). In practice, the derivative is computed using the
sample-wise difference.

4. Take DCT on the group delay function and keep a certain number of coeffi-
cients, excluding the zeroth.

5. Delta coefficients are appended to the feature in a conventional manner.
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Fig. 2. A block diagram of the calculation of APGD.

3 System Description

The details of the developed musical instrument recognition system that incor-
porates APGD as one of its features are addressed in this section. The simplified
block diagram of the system is presented in Figure 3, and the upcoming subsec-
tions are following the implementation of its building blocks.

Feature Extraction

MFCCs

APGD Feature
selection

(Fisher score)

Model
training
(GMM)

Input audio Models

Fig. 3. A block diagram of the feature extraction and training phases.

3.1 Feature Extraction

As primarily explored features, APGD, as well as its first derivative, are in-
corporated in the calculation. Additionally, a baseline scenario is included, i.e.,
the calculation of the static and delta MFCCs. Those are currently quite com-
monly applied for musical instrument recognition, proven to be amongst the
most effective features [8] due to their ability to parametrise the rough shape of
the spectrum, which is different for each instrument. The mel transformation,
which is included in the calculation of MFCCs, is based on human perception
experiments and has been demonstrated to effectively represent perceptually im-
portant information in terms of instrument recognition [22]. The classification



results produced by recognisers based on MFCCs have been shown to resemble
human classifications in terms of the similar confusions [8]. This baseline MFCCs
scenario is intended to indicate the expected performance of the system with the
given data when utilising such established feature.

Frame-blocking is performed with 50%-overlapping windows of length 20 ms.
The number of mel filters in MFCCs calculation is 40, and the number of ex-
tracted coefficients is set to 16 with exclusion of the zeroth (i.e., resulting in 15
static and 15 delta coefficients). In the case of APGD, 60 static and 60 delta
coefficients are extracted as suggested by preliminary experiments. For the value
of the LPC order, a parameter search has been performed within the range 20
to 70, and the order of 40 has been selected.

The calculation of the combination of these features is foreseen in order to
investigate whether the APGD, if not as effective as MFCCs per se, is capable
of enhancing the performance of the system when used as a complement to
the baseline feature. This way, a feature set that incorporates both amplitude
and phase information is acquired. The combined features of dimension 150 are
obtained by concatenating the values of MFCCs and APGD.

3.2 Feature Selection

Generally, feature selection is applied in order to keep those features that are
more relevant for the separability of classes. In this study, one of the goals is to
demonstrate the effectiveness of the combined method when the dimensionality
is reduced down to the size of the baseline MFCCs feature vectors.

The chosen approach for feature selection is the Fisher score [14]:

Fr =

∑c
i=1 ni(µi − µ)2∑c

i=1 niσ
2
i

, (4)

where r is the index of the feature being scored, i = 1, . . . , c is the class index,
µi and σ2

i are the mean and the variance of class i, and µ is the mean of the
whole set. The highest score is assigned to the feature on which the data points
of different classes are far from each other, and the points of the same class
are close to each other. A fixed number of features having the highest score are
selected.

3.3 Training and Recognition

The training and recognition phases are performed by employing Gaussian mix-
ture models (GMM). For each class, the feature vectors from the training data
are used to train the GMM, i.e., to estimate the parameters of such model that
best explains these features. The expectation-maximisation (EM) algorithm is
used for this purpose, and each class is represented by a GMM of 16 components.

In recognition, the trained models of each class are fit into each frame of the
test instances, producing log-likelihoods. Log-likelihoods are accumulated over
the frames of the test instance. Thereupon, the label of the class whose model
has produced the highest log-likelihood is assigned to that instance.



4 Evaluation

The performance of the proposed approach is evaluated in a separate note-wise
instrument classification scenario. Several instrument sets grouped by the level
of complexity of the resulting problem are considered. The instrument content
of these sets is presented below, followed by the obtained evaluation results.

4.1 Acoustic Material

The recordings (sampling frequency 44.1 kHz) used in evaluation originate from
the RWC Music Database [12]. Each of the instruments is represented in most
cases by three instances, which stand for different instrument manufacturers and
musicians. These are subdivided into subsets according to the playing styles (e.g.,
bowed vs plucked strings), and only one playing style per instrument is taken into
account. In total, three instruments sets (Table 1) are considered, consisting of 4,
9 and 22 instruments. The choice of instruments in the first two sets is influenced
by the requirement of a sufficiently high number of notes per instrument for its
consistent representation. The largest set, composed of diverse instruments and
even vocals, not necessary sufficiently represented in the database, is intended
to demonstrate a highly complex classification scenario.

Table 1. Instrument sets used in evaluation.

Set List of instruments

4-set Acoustic Guitar, Electric Guitar, Tuba, Bassoon
9-set Piano, Acoustic Guitar, Electric Guitar, Electric Bass, Trombone, Tuba,

Bassoon, Clarinet, Banjo.
22-set “4-set” + “9-set” + “woodwinds” (Oboe, Clarinet, Piccolo, Flute,

Recorder) + “strings” (Violin, Viola, Cello, Contrabass) + vocals (So-
prano, Alto, Tenor, Baritone, Bass)

The dataset, where each instrument is represented by several hundred record-
ings, is randomly divided into the training and test subsets. The subsets are
acquired from different instrument instances in order to resemble a real-life ap-
plication scenario. The ratio between the sizes of the training and test subsets
is roughly 70%/30%.

4.2 Results

The evaluation results obtained with each of the instrument sets are summarised
in Table 2. The values of the accuracy of MFCCs are somewhat different (within
the range of 1%) from the previously reported [6], although the same database
and the same instruments were used. This is due to the fact that the correspond-
ing tests needed to be repeated in order to report additional, more detailed re-
sults. The randomisation of the separate note recordings that occurs during the



Table 2. Evaluation results, where the performance of APGD is compared to the per-
formance of MODGDF [6]. FeatSel 30 and 120 stand for applying the feature selection
and selecting 30 and 120 features, respectively.

Method Recognition accuracy, %
4-set 9-set 22-set

MFCCs 90.9 83.7 68.8
MODGDF 84.4 59.9 41.7
APGD 97.9 84.8 63.3

MODGDF + MFCCs 96.0 84.9 70.7
APGD + MFCCs 93.7 87.0 68.3

APGD + MFCCs + FeatSel 30 95.5 84.2 66.2
APGD + MFCCs + FeatSel 120 94.4 85.7 70.0

division of the dataset into training and test sets, as well as randomisation during
the initialisation of the EM algorithm are the reasons for such behaviour. The
overall trend of accuracy improvements along the evaluated scenarios, however,
is the same, and the differences between the performance of presented methods
are of the same character.

The results include among others applying feature selection methodology
with selecting 30 and 120 features. In the first case, the idea is to demonstrate the
effectiveness of the combined approach when the data dimensionality is reduced
down to the size of MFCCs vectors. In the case of 120 selected features, shown
to be an optimal parameter during preliminary tests, the goal is to maximise
accuracy gains.

By examining the obtained results, one may observe that APGD, used as
such, is capable of serving as a reliable feature. The improvement over the base-
line MFCCs scenario is apparent with both 4- and 9-instrument sets. The more
real-life application case, namely, the set of 22 instruments, has shown to be
somewhat complicated for the APGD feature, showing a decrease in accuracy of
5.5%. However, by combining both features and applying feature selection, the
accuracy improvement compared to the baseline case is, nevertheless, achieved.
The combined method with feature selection has demonstrated to be effective
even when the dimensionality of the feature space is reduced down to the size
of the baseline MFCCs vectors, i.e., when no more degrees of freedom is intro-
duced. This shows that APGD does indeed provide new information in terms
of musical instrument classification, which is explained both by the relevance of
LPC analysis of musical instrument sounds and its capability of capturing phase
information, which the conventional features tend to neglect.

A somewhat more specific comparison of the features can be performed by
observing the instrument-wise accuracies. As seen in Figure 4, obtained with
the set of nine instruments, the accuracy improvement introduced by APGD-
based methods compared to MFCCs is mostly pronounced in the cases of string
instruments (Acoustic Guitar, Electric Guitar, Electric Bass and Banjo), which
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Fig. 4. Instrument-wise accuracies in selected evaluation scenarios with the 9 instru-
ments set.

is in agreement with the reported applicability of all-pole modelling of guitar
body response [18]. Additionally, some improvement is noticeable in the cases
of instruments Tuba and Bassoon, which may be interpreted by phase-based
nature of APGD, since the improvement in these instruments is also apparent
in the case of MODGDF.

Even more thorough analysis of the results may be performed by address-
ing the confusion matrices, presented in Table 3. Amongst the most obvious
observations one may mention how the APGD-based method missclassifies the
instrument Piano for Banjo, whereas MFCCs tend to classify Piano correctly
in most of the cases. However, by applying a combined method with feature
selection, this erroneous behaviour is suppressed to some degree.

Another observation is that the instrument Classic Guitar appears for the
MFCCs-based method somewhat confusable with other string instruments. On
the other hand, the APGD and combined methods make such confusions signif-
icantly less often, which corresponds to the previously made conclusion on the
applicability of LPC-based methods for string instruments.

Additional observations can be drawn from the presented data, however, it is
not always as straightforward to find a meaningful explanation to the observed
phenomena. For instance, it remains unclear why MFCCs sometimes confuse
Tuba with Electric Bass. However, this is overcome by the APGD-based meth-
ods, which show an almost 100% accuracy on Tuba, presumably, due to the
importance of the phase characteristics of the sound of this instrument.



Table 3. Confusion matrices obtained with the evaluation of MFCCs, APGD and
combined method with selecting 120 features in the 9 instrument case.

MFCCs

Instrument \ Recognised as Pn ClG ElG ElB Trmb Tub Bsn Clrn Bnj

Piano 94 - - - - - - - 6
Classic Guitar 6 77 - 9 - - - - 8
Electric Guitar 9 - 91 - - - - - -

Electic Bass - 24 - 76 - - - - -
Trombone - - - - 98 - - 1 1

Tuba - - - 7 - 92 1 - -
Bassoon 3 2 1 2 4 - 76 2 10
Clarinet - - - 2 1 - - 97 1

Banjo 2 42 - 3 - - 1 - 52

APGD

Instrument \ Recognised as Pn ClG ElG ElB Trmb Tub Bsn Clrn Bnj

Piano 63 2 - - - - - 2 34
Classic Guitar 3 95 - - - - - - 2
Electric Guitar - - 96 - - - - 1 3

Electic Bass 1 10 - 89 - - - - -
Trombone - - - - 88 - 1 2 8

Tuba - - - 1 - 99 - - -
Bassoon - - - - 4 - 79 13 3
Clarinet - 3 - 1 - - - 92 5

Banjo 1 21 - 11 1 - - - 66

APGD + MFCCs + FeatSel 120

Instrument \ Recognised as Pn ClG ElG ElB Trmb Tub Bsn Clrn Bnj

Piano 81 2 - - - - - - 17
Classic Guitar 4 93 - 2 - - - - 1
Electric Guitar - - 99 - - - - - -

Electic Bass 1 21 - 78 - - - - -
Trombone - - - - 92 - 4 1 4

Tuba - - - 3 - 97 - - -
Bassoon - - - 1 2 - 74 9 14
Clarinet - 2 - 2 - - - 97 -

Banjo 1 30 - 8 - - - - 61



5 Conclusions

This paper studies the use of all-pole group delay features for musical instrument
recognition. The proposed method of utilising the APGD feature for the given
problem has shown to be valid, with its performance on the comparable levels
with the commonly used MFCCs. The absolute recognition accuracy gain has
shown to be up to 7% in the simpler classification scenario. In the complex
classification scenario, APGD on its own shows somewhat lower performance,
however, by incorporating the combined features with feature selection, accuracy
gains are present in all of the evaluated cases. The work has shown that by
combining the relevance of linear predictive analysis for instrument recognition
with the significance of the phase information, often neglected by the commonly
used features, APGD demonstrates its effectiveness and a promising potential
for musical instrument recognition.

As a future research suggestion, it is worthwhile to study the performance of
the proposed method in a group-wise classification scenario, as opposed to the
currently presented instrument-wise case. Namely, training models of groups,
composed of instruments, similar in terms of the physics of their sound produc-
tion, could reveal interesting dependencies and enable a more thorough investi-
gation of the importance of the phase for musical instrument recognition.
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