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ABSTRACT

In this work, the semi-supervised learning (SSL) tech-
niques are explored in the context of musical instrument recog-
nition. The conventional supervised approaches normally rely
on annotated data to train the classifier. This implies per-
forming costly manual annotations of the training data. The
SSL methods enable utilising the additional unannotated data,
which is significantly easier to obtain, allowing the overall
development cost maintained at the same level while notably
improving the performance. The implemented classifier incor-
porates the Gaussian mixture model-based SSL scheme utilis-
ing the iterative EM-based algorithm, as well as the extensions
facilitating a simpler convergence criteria. The evaluation is
performed on a set of nine instruments while training on a
dataset, in which the relative size of the labelled data is as lit-
tle as 15%. It yields a noteworthy absolute performance gain
of 16% compared to the performance of the initial supervised
models.

Index Terms— Music information retrieval, musical in-
strument recognition, semi-supervised learning

1. INTRODUCTION

Musical instrument recognition belongs to the music infor-
mation retrieval research area, and its applications include,
e.g., automatic music database annotation for indexing and
retrieval purposes and automatic music transcription applica-
tions, which could benefit from identifying the instruments
present in the recording. Furthermore, one may think in
broader terms and realise applicability of musical instrument
recognition for other areas, such as musical genre classifica-
tion, where instrumentation may serve as a feature [1]. The
recent advancements in the area of instrument recognition
include the use of multiscale mel frequency cepstral coeffi-
cients [2] and projective non-negative matrix factorisation [3].

Instrument identification is often treated as a supervised
classification problem requiring annotated data in order to
train a classifier, as opposed to unsupervised tasks, which op-
erate on unannotated data. To obtain such annotated datasets
is quite laborious: even though there are limitless possibilities

to collect the audio, its annotation requires tedious and expen-
sive human work. Therefore, a requirement of a technique
that would overcome this complication is quite apparent.

Semi-supervised learning (SSL) addresses the requirement
of large datasets needed to train a classifier to demonstrate
a sufficient level of generalisation capability. Basically, the
larger and more diverse the training dataset is, the better gen-
eralisation properties one may expect. In SSL, this dataset
extension is approached by incorporating additional data that
is not annotated. Semi-supervised techniques have shown to
be a successful approach in numerous machine learning tasks,
such as text classification, computer vision, network traffic
classification, as well various audio-related problems, includ-
ing gender and speaker identification [4], prosodic event detec-
tion [5] and sound event classification [6]. In the area of music
information retrieval SSL has been also used, e.g., for music
artist style identification [7], music genre classification [8]
and note onset detection [9]. However, they have not yet been
applied for musical instrument recognition problem. The re-
lated works within neighbouring areas deal with one of the
SSL techniques for singing voice detection [10] and an idea of
weak labelling (where a label indicates appearance or absence
of an instrument in a mixture) for instrument recognition [11].

The primary objective of this work is to show whether SSL
is capable of introducing improvement in the performance of
an instrument recogniser. It starts with an description of the
applied feature, as well as the details of the semi-supervised
training and recognition (Section 2). The SSL concept is stud-
ied on an example of the iterative EM-based algorithm. Fur-
thermore, its extensions that facilitate a smoother transition
between the models along the iterations are applied. Section 3
presents the details of the evaluation of the method on an exam-
ple of a nine instrument note-wise classification case, which
is followed by the conclusions drawn in Section 4.

2. SEMI-SUPERVISED LEARNING FOR MUSICAL
INSTRUMENT RECOGNITION

This section presents the details of the developed system,
which applies SSL for instrument recognition. It starts with
the description of the utilised features followed by the imple-
mentation details of the recogniser and the training algorithm.
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2.1. Feature extraction

As features, the static and delta mel frequency cepstral coef-
ficients (MFCCs) are utilised for representing the timbre of
the musical instruments. Originally, MFCCs have been used
in speech recognition. With their aid it is possible to extract
the information about the spectral envelope in order to detect
formants, which characterise the speech content.

In the musical instrument signals, however, the presence of
formants in the spectrum is rarely strong [12], or they are not
a factor independent from fundamental frequency, in contrast
to speech signals. Still, the MFCCs have shown quite satisfac-
tory performance in musical instrument classification [13] and
proven to be amongst the most effective features applied in this
area [14] due to their ability to parametrise the rough shape of
the spectrum, which is different for each instrument. Further-
more, being a perceptually-based representation of an acoustic
signal, MFCCs are applicable to characterise any perceptually
meaningful sound, including speech, musical instruments and
natural ambience [15].

2.2. Recogniser

The implemented system performs supervised as well as semi-
supervised learning, and both scenarios utilise mixture models,
namely Gaussian mixture models (GMM). For each class the
feature vectors obtained from the labelled data are used to
train the GMM, i.e., to estimate the parameters of the mix-
ture model that best explains these feature vectors. The EM
algorithm [16] is applied for this purpose.

In recognition, the models obtained during the train-
ing stage are class-wise fit into each frame of each test in-
stance producing log-likelihoods. The latter are subsequently
summed over the frames of the test instance. Thereupon,
the label of the class whose model has produced the highest
log-likelihood is assigned to that instance.

In the supervised case, the training ends at the point when
the GMMs are obtained based on the labelled training data.
The semi-supervised training scenario continues by incorpo-
rating the unlabelled data and learning the new GMMs with
the aid of an EM-based algorithm, which is described in the
upcoming section.

2.3. Semi-supervised training

The training is performed with the aid of the conventional
supervised EM-algorithm, as well as its SSL extension. In
order to incorporate SSL into the EM algorithm for GMM, the
iterative EM-based algorithm is applied, as presented in [4],
as well as its further extended version (see Algorithm 1). It
operates on the complete training dataset S comprised of the
labelled Sl (with the labelled samples of indices i = 1, . . . , L)
and unlabelled Su (with the unlabelled instances of indices
i = L+1, . . . , L+U ) subsets, where L and U are the numbers
of labelled and unlabelled samples, respectively.

Input: labelled data Sl, unlabelled data Su.
Set t = 0, t∗ = 0.
[Initial M] Initialise θ̂(0) = argmaxθ P (Sl|θ).
repeat

Weight labelled data (Eq. 2).

for j† = 1, . . . ,M do
[E] Set ẑ(t+1) = E[z|S; θ̂(t)].
for i = L+ 1, . . . , L+ U do

Set j∗ = argmaxj ẑ
(t+1)
ij .

if j† = j∗ then

Set ẑhard(t+1)
ij,j=1,...,M =

{
1 if j = j∗

0 otherwise
.

else
Set ẑhard(t+1)

ij,j=1,...,M = ẑ
hard(t)
ij,j=1,...,M .

end
end
[M] Set θ̂(t+1) = argmaxθ P (S, ẑhard(t+1)|θ).
Set t = t+ 1.

end
Set t∗ = t∗ + 1.

until convergence.
Output: θ̂(t).

Algorithm 1. The iterative EM-based algorithm for SSL with
the proposed extensions highlighted.

Firstly, the supervised EM-algorithm is applied in train-
ing based on the labelled instances only in order to obtain
the initial model parameters estimate θ̂(0). Thereupon, the
iterative algorithm incorporates the unlabelled data in such
a manner that the expected values of the hidden variable zij
(Equation 1) are used to estimate labelling for the unlabelled
examples at each step. The hidden variable zij is defined for
all j = 1, . . . ,M class indices (where M is the total number
of classes) and for all training samples xi, i = 1, . . . , L, L +
1, . . . , L+ U as

zij =

{
1 if yi = j

0 otherwise
, (1)

where yi is the true labelling of the instances, known for the la-
belled data and estimated in the case of unlabelled data. Com-
bined over the whole training dataset, the instances of this
hidden variable constitute a matrix z, and its estimated value
at the iteration t + 1 is referred to as ẑ(t+1). The labelled
data together with the unlabelled data with ẑ(t+1) are used to
re-estimate the model parameters θ̂(t+1), and the estimation
of ẑ and θ̂ is repeated iteratively.
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2.3.1. Labelled data weighting

It has been noted [4] that the EM-based algorithms for SSL
improve the recognition accuracy in case the initial labelled
data size is relatively low. However, the difference in the
advantages of incorporating large and small amounts of unla-
belled data has been reported relatively insignificant, which
is explained by the fact that with increasing unlabelled data
the parameter estimates depend very little on the labelled data
and reliable class information [4]. Therefore, it has been sug-
gested to de-weight the impact of the unlabelled data, which
can be achieved by scaling the contribution from unlabelled
data in terms of the computed log-likelihoods. As a result, the
certainty of the models that are obtained from labelled data
is emphasised and the algorithm is more likely to rely on the
certainly labelled data.

One could apply a somewhat coarser but simplified way
of de-weighting the contribution of the unlabelled data. Its
essence is in replicating the labelled data several times, and
along the subsequent iterations the replication factor is gradu-
ally decreased:

Sl = w(t)♦Sl, (2)

where w(t) is a decreasing weighting function of iteration
index t and ♦ stands for the replication operation. This ap-
proach, albeit not as flexible, does not introduce additional
complexity to the algorithm, while still expectedly emphasis-
ing the significance of the a priori correct labelling.

2.3.2. Class-wise retraining

The basic version of the iterative EM-based algorithm contem-
plates retraining of all the models at each iteration. It appears
apparent that at any retraining stage there exists a classifica-
tion error. If some data point was previously classified cor-
rectly leading to a somewhat correct model of its actual class,
the classification error introduced at a later point would mean
degradation of the models of two classes: the actual origin of
the data point and the misclassification result.

In order to reduce such coupled model degradation effect,
we suggest to apply a so-called class-wise retraining approach
that enforces the previously obtained models of one class not
to change while training another class. The essence of the
approach is that at each iteration the models of only one class
are retrained, while the others remain based on the previous
labels (see Algorithm 1, where this extension is highlighted in
the statements that handle the variables j∗ and t?). As an addi-
tional outcome of the method, a smoother transition between
the models is expected, thus resulting in fewer local peaks in
the accuracy curve along the iterations of the algorithm, which
could additionally benefit the criterion of convergence.

3. EVALUATION

We evaluate the performance of the implemented algorithm
and its extensions in a separate note-wise instrument classi-
fication scenario. The following parameters of the feature
extraction and training algorithms are used in evaluation: 16
MFCCs are extracted in 20 ms frames with 50% overlap, and
each class is represented by a GMM of 16 components. Based
on the preliminary experiments with different instrument sets,
a sequence of values [8, 6, 4, 2, 1, 1, . . .] is used along the iter-
ations of the extended algorithm as a labelled data weighting
parameter w.

3.1. Acoustic material

The evaluation is performed with a dataset consisting of sep-
arate monophonic note recordings. A set of nine instruments
originating from the RWC Music Database [17] is used. Each
of them is represented by three instances, which stand for
different instrument manufacturers and musicians. The instru-
ments used in evaluation along with the number of separate
note recordings originating from each of them are the follow-
ing: Pianoforte (792), Classic Guitar (702), Electric Guitar
(702), Electric Bass (507), Trombone (278), Tuba (270), Bas-
soon (360), Clarinet (360) and Banjo (941). This choice of
instruments is influenced by the requirement of a sufficiently
high number of notes per instrument for their adequately con-
sistent representation in the database.

The dataset, consisting of 4912 recordings in total, is di-
vided into the three following groups: the labelled training, the
unlabelled training and the testing subsets, where the labelled-
to-unlabelled ratio of the dataset sizes is set to 15/85. The
labelled and unlabelled datasets are always acquired from dif-
ferent instrument instances in order to better resemble the
real-life application scenario. For the testing set, a separate
instance is used for the similar reasons, and the approximate
ratio between the training and test set sizes is 70/30. The notes
are mostly recorded in chromatic order, which may make the
truncated datasets biased towards lower notes. To eliminate
this, the notes within each set are also randomised.

3.2. Decision on convergence

In [4], the experiments were conducted using the models ob-
tained after a single iteration of the EM-based iterative algo-
rithm. The iterations may go on, but there is a need of a
rule that would facilitate a decision to terminate the algorithm.
One possible solution is to check the total number of labels
that change at each iteration. One can utilise the matrix of the
hidden variables ẑhard

ij provided by the algorithm (Equation 1)
to check for a label change count (LCC):

LCC(t+1) =
1

2

M∑
i=1

M∑
j=1

∣∣∣ẑhard(t+1)
ij − ẑ

hard(t)
ij

∣∣∣, (3)
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Table 1. Experimental results, where initial stands for the
accuracy obtained at the initial, purely supervised iteration
of the algorithm based on the 15% of data, whereas the final
results are produced by 40 semi-supervised (macro)iterations.

Test case Recognition
accuracy, %

Supervised, 100% of data 83.8

SSL with iterative EM initial final

basic algorithm [4] 61.4 76.5
with class-wise retraining 61.4 74.3
with lab. data weighting 61.4 75.1

with both extensions 61.4 77.0

where LCC(t+1) — label change count at iteration t + 1. By
normalizing this value by the first label change, one can obtain
a label change rate (LCR):

LCR(t+1) =
LCC(t+1)

LCC(2)
· 100%, (4)

Moreover, the possible local minima in the LCR curve that
may occur at the earlier stages of the algorithm may trigger
the termination earlier than the actual convergence. These
may be minimised with the aid of moving average filter based
on the M preceding values, where M equals the number of
classes. As a result, low values of the smoothed LCR are
expected when the obtained models are sufficiently certain,
which suggests that the algorithm may be terminated.

3.3. Results

The evaluation is performed in five different scenarios. Firstly,
a fully supervised case is considered, i.e. all the data that is
used in each evaluation scenario, is in this case labelled. The
obtained results are expected to indicate an upper limit for
the possible performance of SSL since it can be viewed as
SSL with all the labels estimated correctly. The following
four evaluation scenarios incorporate the non-modified itera-
tive EM-based algorithm, as well as the proposed extensions
and their combination.

The combined results are presented in Table 1, and the
performance of the SSL algorithms along the iterations given
the identical datasets is compared in Figure 1, which addition-
ally includes the curves of the LCR. The term macroiteration
in the case of the class-wise retraining approach stands for a
set of iterations performed to retrain the models of all classes
once and is referred to as t∗ in Algorithm 1.

The LCR values are presented without the smoothing op-
eration in order to enable a more detailed comparison of the
approaches in terms of resulting model certainty. For the pur-
pose of a fair comparison, the total number of performed iter-
ations or macroiterations in all cases is set to be the same, i.e.
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Fig. 1. Average accuracy and values of the LCR as functions
of number of iterations or macroiterations.

the thresholding operation on the LCR has not been applied.
However, all the curves demonstrate a similar behaviour of the
LCR values and its variations being reduced along the itera-
tion count axis in the region, where the accuracy curve reaches
some degree of saturation. This suggests that, indeed, a value
of the LCR being below a defined threshold could be a valid
convergence criterion.

By examining the values of LCR with correspondence to
the average accuracy values at the same iteration count, an
observation can be drawn that the LCR curve reaches its stable
low values at the point when the accuracy does not appear
to have any potential to grow. Even the sudden peak in the
LCR curve corresponding to the algorithm incorporating both
extensions (macroiteration index 30) does not appear to be
a shortcoming: it clearly indicates that the average accuracy
will change somewhat significantly at the next iteration.

Generally speaking, all the evaluated algorithms are ca-
pable of yielding similar ultimate improvement (around 12-
16%) of the initial supervised models at roughly the same
time instance. The basic algorithm produces the most oscil-
lating behaviour, although it reaches the convergence earlier.
The proposed extensions, especially when incorporating class-
wise retraining, produce a smoother transition between the
models along the iterations and ultimately reaches the same
performance level.
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4. CONCLUSIONS

In this work, the applicability of SSL to the problem of mu-
sical instrument recognition has been explored. The basic
EM-based SSL algorithm and its two proposed extensions fa-
cilitating a smoother transition between the learnt models and
their increased certainty have been implemented and evalu-
ated.

The evaluation performed on a nine-instrument note-wise
classification case given as little as 15% annotated training
data has shown up to 12-16% absolute improvement of the
initial models’ performance, which corresponds to the relative
decrease of the error rate by 40%.

As a suggestion for the future investigation, a more sophis-
ticated feature extraction method could be incorporated into
the developed system. In the case of a more effective feature
extraction, the impact of the semi-supervised techniques could
be more apparent.

Moreover, a further investigation of the system’s perfor-
mance could be conducted in more complex scenarios by in-
creasing the number of instruments in the set or by introducing
noise, reverberation and distortions to the datasets in order to
mimic the real-world application scenario.
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