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Abstract. In this work, the modified group delay feature (MODGDF)
is proposed for pitched musical instrument recognition. Conventionally,
the spectrum-related features used in instrument recognition take into
account merely the magnitude information, whereas the phase is often
overlooked due to the complications related to its interpretation. How-
ever, there is often additional information concealed in the phase, which
could be beneficial for recognition. The MODGDF is a method of incor-
porating phase information, which lacks of the issues related to phase
unwrapping. Having shown its applicability for speech-related problems,
it is now explored in terms of musical instrument recognition. The evalu-
ation is performed on separate note recordings in various instrument sets,
and combined with the conventional mel-frequency cepstral coe�cients
(MFCCs), MODGDF shows the noteworthy absolute accuracy gains of
up to 5.1% compared to the baseline MFCCs case.
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1 Introduction

Situationally tailored playlisting, personalised radio and social music applications
are just several examples of application of music information retrieval. This
research area, broadly speaking, studies the methods of obtaining information
of various kinds from music.

Musical instrument recognition is one example of its subtopics, and it has
been most actively explored since the 1990’s. An extended overview of the early
systems is given in [7]. The recent works on the subject propose novel classifica-
tion approaches in terms of the given problem (e.g., genetic algorithms [15] and
semi-supervised learning [4]), as well as introduce new features (e.g., multiscale
MFCCs [18]). There exists an established set of features commonly applied for in-
strument recognition. Depending on whether they treat audio from the temporal
or spectral point of view, these are subcategorised accordingly.
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The temporal features (e.g., the amplitude envelope) address instrument
recognition under the assumption that the relevant information is within the
transient properties of a signal. Such assumption is perceptually motivated: the
attack characteristics are believed to play crucial role in human recognition of
musical instruments [5].

The spectral features employ a di↵erent approach. Particularly, those that are
related to the harmonic properties of a sound (e.g., inharmonicity and harmonic
energy skewness) do preserve the important properties of the musical instrument
timbre [1]. The same applies to other spectrum-related features as well, such as
mel-frequency cepstral coe�cients (MFCCs). It is worth mentioning that, being
spectrum-based features, they in fact concentrate only on its magnitude part.

In general, spectral information is complete only if both magnitude and phase
spectra are specified. Signal processing di�culties, such as wrapping of the phase,
make direct processing of the phase spectra challenging. A popular solution is
to use the modified group delay function [17], which can be applied to process
information from the phase spectrum. Previously, it has been utilised for several
applications, including speech recognition [17, 11] and spectrum estimation [19].

The modified group delay feature (MODGDF) has not yet been applied for
instrument recognition, although phase information has been recently incorpo-
rated in the neighbouring areas (e.g., instrument onset detection by means of the
phase slope function [12]). This work proposes calculating MODGDF for pitched
instrument recognition, either primarily or as a complement to the established
MFCCs, under the assumption that phase may contain additional information
relevant in terms of instrument classification. The primary objective is to demon-
strate whether MODGDF is at all capable of introducing improvement in the
performance of an instrument recogniser.

This paper is organised as follows. Section 2 presents the motivation and
properties of MODGDF. Subsequently, Section 3 introduces the particular in-
strument recognition system, which incorporates MODGDF, as well as MFCCs.
Its performance is consecutively evaluated with various instrument sets in Sec-
tion 4. Finally, the conclusions about the applicability of the feature are drawn
along with the future research suggestions in Section 5.

2 Modified Group Delay Feature

This section commences with the motivation behind utilising phase information
in general and MODGDF in particular for musical instrument recognition. This
is followed by the details of computation of the group delay function, as well as
its modified version along with the reasons for that modification.

2.1 Motivation

Phase is often overlooked in many audio processing solutions due to the compli-
cations related to the unwrapping of the phase spectrum. Despite of that, phase
could be highly informative due to its ability of indicating peaks in the spectral
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envelope. In terms of speech recognition and related problems, these correspond
to formants, which are useful for extracting speech content.

In the musical instrument signals, however, the presence of formants in the
spectrum is not as strong [13], or they are not a factor independent from fun-
damental frequency, in contrast to speech signals. For example, in the spectra
of trombone or clarinet, due to the acoustical change of active volume of their
body during the sound production, the resonances depend on pitch [8, 14].

Nevertheless, a phase-based feature appears to be applicable for instrument
recognition as well. Broadly speaking, while the commonly applied MFCCs fea-
ture is capable of modelling the resonances introduced by the filter of the instru-
ment body, it neglects the spectral characteristics of the vibrating source, which
also play their role in human perception of musical sounds [9]. Incorporating
phase information attempts to preserve this neglected component.

Additionally, a phase-related feature could indicate a so-called mode locking
phenomenon, characteristic to some instruments. The frequencies of each mode
are never in precise integer ratios, which would yield a nonrepeating waveform.
However, despite the inharmonicieties of the natural resonances, the individ-
ual modes of such instruments are locked into the precise frequency and phase
relationships, provided certain conditions are met [8].

2.2 Properties

The Fourier transform X(!) of a signal x[n] in the polar form is expressed as

X(!) = |X(!)| expj✓(!)
. (1)

The group delay function is obtained as [2]

⌧g(!) = �Im

✓
d

d!

log(X(!))

◆
(2)

=
XR(!)YR(!) +XI(!)YI(!)

|X(!)|2 , (3)

where Y (!) is the Fourier transform of y[n], and y[n] = nx[n]. The advantage of
Equation 3 is that no explicit phase unwrapping is needed.

The group delay function is well-behaved only if the zeros of the system
transfer function are not close to the unit circle. The zeros may be introduced by
the excitation source or as a result of short time processing [3, 11]. When zeros of
the transfer function are close to the unit circle, the magnitude spectrum exhibits
dips at the corresponding frequency bins. Due to this, the denominator term in
Equation 3 tends to a small value, resulting in a large value of the group delay
function ⌧g(!). This manifests itself in spurious high amplitude spikes at these
frequencies, masking out the resonance structure in the group delay function.

The modification [17] of the group delay function is performed by suppress-
ing the zeros of the transfer function. This is done by replacing the magnitude
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spectrum X(!) by its cepstrally smoothed version S(!). Additionally, the pa-
rameters ↵ and � are introduced to control the dynamic range. The modified
function is defined as

⌧m(!) = sign
�
⌧(!)

� �
|⌧(!)|

�↵
, (4)

where

⌧(!) =
XR(!)YR(!) +XI(!)YI(!)

|S(!)|2� . (5)

In the latter equation, S(!) is the cepstrally smoothed version of X(!), and the
function “sign” returns the sign.

To convert the function into features, the DCT is applied on Equation 4. This
performs decorrelation, and the the first NC coe�cients are retained (excluding
the zeroth coe�cient). The parameters ↵, � and the length of the cepstral lifter
window lifterw are tuned to a specific environment. In practice, the feature is
calculated in short frames under the assumption of spectral stationariness within
their length, and the Fourier analysis is performed with the aid of DFT.

3 System Description

The details of the developed musical instrument recognition system that incorpo-
rates MODGDF as one of its features are addressed in this section. The upcoming
paragraphs are following the implementation of its building blocks.

3.1 Feature Extraction

As primarily explored features, MODGDF, as well as its first and second deriva-
tives, are incorporated in the calculation. Additionally, a baseline scenario is
included, i.e., the calculation of the static and delta MFCCs. Those are cur-
rently quite commonly applied for musical instrument recognition, proven to be
amongst the most e↵ective features [6] due to their ability to parametrise the
rough shape of the spectrum, which is di↵erent for each instrument. The mel
transformation, which is included in the calculation of MFCCs, is based on hu-
man perception experiments and has been demonstrated to e↵ectively represent
perceptually important information in terms of instrument recognition [16]. The
classification results produced by recognisers based on MFCCs have been shown
to resemble human classifications in terms of the similar confusions [6]. This
baseline MFCCs scenario is intended to indicate the expected performance of
the system with the given data when utilising such established feature.

Frame-blocking is performed with 50%-overlapping windows of length 20 ms.
The number of mel filters in MFCCs calculation is 40. For both features, the
number of extracted coe�cients (referred to asNC in the case of MODGDF) is set
to 16. The search for the optimal value of the additional parameters of MODGDF
(↵, � and lifterw) is omitted due to the high computational requirements of such
operation, as well as motivated by the fact that the ultimate objective is to
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demonstrate whether MODGDF is at all capable of introducing improvement.
The values of these parameters are therefore set to � = 0.9, ↵ = 0.4 and lifterw =
8, shown to be optimal for speech recognition [11]. To search for the refined values
appears to be an appealing problem left for the future exploration.

The calculation of the combination of these features is foreseen in order
to investigate whether the MODGDF, if not as e↵ective as MFCCs per se, is
capable of enhancing the performance of the system when used as a complement
to the baseline feature. This way, a feature set that incorporates both amplitude
and phase information is acquired. The combined features of dimension 64 are
obtained by concatenating the values of MFCCs and MODGDF.

3.2 Training and Recognition

The training and recognition phases are performed by employing Gaussian mix-
ture models (GMM). For each class, the feature vectors from the training data
are used to train the GMM, i.e., to estimate the parameters of such model that
best explains these features. The expectation-maximisation (EM) algorithm is
used for this purpose, and each class is represented by a GMM of 16 components.

In recognition, the trained models of each class are fit into each frame of the
test instances, producing log-likelihoods. The latter are summed over the frames
of the test instance. Thereupon, the label of the class whose model has produced
the highest log-likelihood is assigned to that instance.

4 Evaluation

The performance of the proposed approach is evaluated in a separate note-wise
instrument classification scenario. Several instrument sets grouped by the level
of complexity of the resulting problem are considered. The instrument content
of these sets is presented below, followed by the obtained evaluation results.

4.1 Acoustic Material

The recordings (sampling frequency 44.1 kHz) used in evaluation originate from
the RWC Music Database [10]. Each of the instruments is represented in most
cases by three instances, which stand for di↵erent instrument manufacturers and
musicians. These are subdivided into subsets according to the playing styles (e.g.,
bowed vs plucked strings), and only one playing style per instrument is taken into
account. In total, five instruments sets (Table 1) are considered: three generic
(consisting of 4, 9 and 22 various instruments) and two specific (“woodwinds”
and “strings”). The choice of instruments in the sets “4 various” and “9 vari-
ous” is influenced by the requirement of a su�ciently high number of notes per
instrument for their consistent representation in the database. The “22 various”
set, consisting of diverse instruments and even vocals, not necessary su�ciently
represented in the database, is intended to demonstrate a highly complex clas-
sification scenario. The possible performance improvements with this set would
ultimately indicate the real-life applicability of the proposed method.
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Table 1. Instrument sets used in evaluation.

Instrument set List of instruments

4 various Acoustic Guitar, Electric Guitar, Tuba, Bassoon
9 various Piano, Acoustic Guitar, Electric Guitar, Electric Bass,

Trombone, Tuba, Bassoon, Clarinet, Banjo.
22 various “4 various” + “9 various” + “woodwinds” + “strings” +

vocals: Soprano, Alto, Tenor, Baritone, Bass

woodwinds Oboe, Clarinet, Piccolo, Flute, Recorder
strings Violin, Viola, Cello, Contrabass

Additionally, the sets “woodwinds” and “strings” are used in evaluation in
order to observe a possible dependency between the physics of the instruments
and the particularities of the phase content of their sound (Section 2.1), which
could manifest themselves in changes in recognition accuracy.

The dataset, where each instrument is represented by several hundred record-
ings, is divided into the training and testing subsets. The subsets are acquired
from di↵erent instrument instances in order to resemble a real-life application
scenario. The ratio between the sizes of the training and test subsets is roughly
70%/30%. Due to a limited representation of some instruments, somewhat un-
stable results could be expected. Hence, the evaluation is performed three times
with randomisation over the dataset contents, and the results are averaged.

4.2 Results

The evaluation results obtained with each of the instrument sets are summarised
in Table 2. One may observe that MODGDF, used as such, is capable of serving
as a reliable feature in several cases (namely, the “4 various”, “woodwinds” and
“strings” sets). In the case of the “strings” set, it even manages to noticeably
outperform the MFCCs by 4.1%.

Considering the combined case, including MODGDF as an additional feature
clearly improves the recognition accuracy with each of the instrument sets. The
most significant improvement is observed with the “4 various” set, which is most

Table 2. Evaluation results.

Instrument set Recognition accuracy, %
MFCCs MODGDF combined

4 various 90.9 84.4 96.0
9 various 82.6 59.9 84.9
22 various 68.8 41.7 70.7

woodwinds 74.5 66.7 77.2
strings 69.7 73.8 73.6
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extensively represented (about 750 notes per instrument). With the more compli-
cated sets, e.g., “woodwinds”, whose representation has been not as high (about
250 notes per instrument), the baseline performance and the improvement intro-
duced by incorporating MODGDF are rather low. In the case of “strings”, the
combined method appears to yield slightly lower recognition accuracy, compared
to the purely MODGDF, however, such small di↵erence is rather to be caused
by the randomisation e↵ects within the EM algorithm. Most importantly, the
combined method does outperform the baseline in this case as well.

A somewhat more specific comparison of the features can be performed by
observing the instrument-wise accuracies. As seen in Figure 1, obtained with the
“9 various” set, most of the improvement in the recognition accuracy introduced
by incorporating MODGDF is present in the cases of some of the woodwinds
(Bassoon) and brass instruments (Tuba). This shows the potential of the appli-
cability of the feature to these instrument groups, which is to be discovered in
future experiments and analysis with relation to the physics of the instruments.
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Fig. 1. Instrument-wise accuracies in each of the evaluation scenario with the “9 various”
instrument set.

5 Conclusions

The proposed method of utilising MODGDF as a complementary feature to
MFCCs for musical instrument recognition has yielded increase in the recogni-
tion accuracy with each of the instrument sets compared to the purely MFCCs
case. The value of the accuracy increase has been shown to be up to a rather
noteworthy 5.1%.

As the future suggestions, it is worthwhile to study the dependency between
the physics of particular instruments and the performance of MODGDF. Addi-
tionally, a search for the optimal parameters of MODGF in terms of the given
problem would be rather beneficial. Finally, evaluating the performance of the
combined features after applying dimensionality reduction and decorrelation ap-
pears reasonable.
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